Multivariate subresultants in roots
We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing t...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea |
Aporte de: |
id |
todo:paper_00218693_v302_n1_p16_DAndrea |
---|---|
record_format |
dspace |
spelling |
todo:paper_00218693_v302_n1_p16_DAndrea2023-10-03T14:21:23Z Multivariate subresultants in roots D'Andrea, C. Krick, T. Szanto, A. Poisson product formula Subresultants Vandermonde determinants We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved. Fil:D'Andrea, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Poisson product formula Subresultants Vandermonde determinants |
spellingShingle |
Poisson product formula Subresultants Vandermonde determinants D'Andrea, C. Krick, T. Szanto, A. Multivariate subresultants in roots |
topic_facet |
Poisson product formula Subresultants Vandermonde determinants |
description |
We give a rational expression for the subresultants of n + 1 generic polynomials f1, ..., fn + 1 in n variables as a function of the coordinates of the common roots of f1, ..., fn and their evaluation in fn + 1. We present a simple technique to prove our results, giving new proofs and generalizing the classical Poisson product formula for the projective resultant, as well as the expressions of Hong for univariate subresultants in roots. © 2005 Elsevier Inc. All rights reserved. |
format |
JOUR |
author |
D'Andrea, C. Krick, T. Szanto, A. |
author_facet |
D'Andrea, C. Krick, T. Szanto, A. |
author_sort |
D'Andrea, C. |
title |
Multivariate subresultants in roots |
title_short |
Multivariate subresultants in roots |
title_full |
Multivariate subresultants in roots |
title_fullStr |
Multivariate subresultants in roots |
title_full_unstemmed |
Multivariate subresultants in roots |
title_sort |
multivariate subresultants in roots |
url |
http://hdl.handle.net/20.500.12110/paper_00218693_v302_n1_p16_DAndrea |
work_keys_str_mv |
AT dandreac multivariatesubresultantsinroots AT krickt multivariatesubresultantsinroots AT szantoa multivariatesubresultantsinroots |
_version_ |
1807319010484682752 |