Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea
The generic boundaries of the Diphyllidea are reassessed based on parsimony and likelihood phylogenetic analyses of 28S rDNA (ribonucleic acid large subunit), 18S rDNA (ribonucleic acid small subunit), and COI (cytochrome oxidase subunit I) sequence data for 31 species representing morphological var...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00207519_v43_n8_p621_Caira |
Aporte de: |
id |
todo:paper_00207519_v43_n8_p621_Caira |
---|---|
record_format |
dspace |
spelling |
todo:paper_00207519_v43_n8_p621_Caira2023-10-03T14:18:36Z Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea Caira, J.N. Marques, F.P.L. Jensen, K. Kuchta, R. Ivanov, V. 18S rDNA 28S rDNA Ahamulina Coronocestus Ditrachybothridium Echinobothrium Elasmobranchs Halysioncum 28s rDNA cytochrome c oxidase DNA 18S ribosome DNA unclassified drug cytochrome DNA flatworm morphology parasite phylogenetics RNA shark article cestode cladistics controlled study Coronocestus Diphyllidea Ditrachybothridium Echinobothrium Echinobothrium sensu stricto genus Halysioncum host Macrobothridium microbial morphology new genus nonhuman nucleotide sequence ordo parsimony analysis phylogeny scolex shark species unindexed sequence Animal Structures Animals Cestoda Electron Transport Complex IV Molecular Sequence Data Parasites Phylogeny RNA, Ribosomal, 18S RNA, Ribosomal, 28S Sequence Analysis, DNA Anacanthobatidae Batoidea Carcharhiniformes Cestoda Chondrichthyes Dasyatidae Dasyatis Diphyllidea Ditrachybothridium Echinobothrium Elasmobranchii Hemiscylliidae Himantura Macrobothridium Myliobatidae Platyrhinidae Rajidae Rhinobatidae Rhinopterinae Rhynchobatidae Scyliorhinidae Taeniura Triakidae Urotrygonidae The generic boundaries of the Diphyllidea are reassessed based on parsimony and likelihood phylogenetic analyses of 28S rDNA (ribonucleic acid large subunit), 18S rDNA (ribonucleic acid small subunit), and COI (cytochrome oxidase subunit I) sequence data for 31 species representing morphological variation across the order. Trees resulting from these analyses yielded a number of well-supported clades that are congruent with unique morphological features mandating generic revision of the order and erection of at least two new genera. Species originally assigned to Echinobothrium van Beneden, 1849 but bearing a corona of spines on the region of the scolex anterior to the bothria and posterior to the apical organ armature are transferred to Coronocestus n. gen.; members of this genus typically parasitize triakid sharks, although one report from a hemiscylliid shark exists. Species with lateral hooklets arranged in continuous bands, rather than in two distinct clusters, are transferred to Halysioncum n. gen.; all species parasitize batoids, mostly myliobatids and rhinopterids, but a few records also exist from arhynchobatids, rhinobatids, platyrhinids and urotrygonids. Our analyses support transfer of the five species originally assigned to Macrobothridium Khalil and Abdul-Salam, 1989 owing to their lack of cephalic peduncle spines to Echinobothrium. As a consequence, Echinobothrium sensu stricto includes species both with and without spines on the cephalic peduncle, but all members of the genus possess lateral hooklets arranged in clusters on either side of the dorsal and ventral apical hooks. With respect to diphyllideans parasitizing catsharks, Ahamulina Marques, Jensen and Caira, 2012 is unique in possessing apical hooks but lacking lateral hooklets and Ditrachybothridium Rees, 1959 is unique in entirely lacking scolex armature. By far the majority of species of Echinobothrium sensu stricto parasitize skates of the family Rajidae, guitarfish of the family Rhinobatidae, and stingrays of the dasyatid genera Taeniura Müller and Henle, Dasyatis Rafinesque, and Himantura Müller and Henle, although a single species each has been reported from Anacanthobatidae, Rhynchobatidae, Platyrhinidae and Myliobatidae. It now seems clear that while by far the majority of diphyllideans parasitize batoids, the diphyllideans parasitizing sharks, and catsharks in particular, remain problematic. Additional collections from these carcharhiniform hosts are likely to be particularly illuminating. © 2013. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00207519_v43_n8_p621_Caira |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
18S rDNA 28S rDNA Ahamulina Coronocestus Ditrachybothridium Echinobothrium Elasmobranchs Halysioncum 28s rDNA cytochrome c oxidase DNA 18S ribosome DNA unclassified drug cytochrome DNA flatworm morphology parasite phylogenetics RNA shark article cestode cladistics controlled study Coronocestus Diphyllidea Ditrachybothridium Echinobothrium Echinobothrium sensu stricto genus Halysioncum host Macrobothridium microbial morphology new genus nonhuman nucleotide sequence ordo parsimony analysis phylogeny scolex shark species unindexed sequence Animal Structures Animals Cestoda Electron Transport Complex IV Molecular Sequence Data Parasites Phylogeny RNA, Ribosomal, 18S RNA, Ribosomal, 28S Sequence Analysis, DNA Anacanthobatidae Batoidea Carcharhiniformes Cestoda Chondrichthyes Dasyatidae Dasyatis Diphyllidea Ditrachybothridium Echinobothrium Elasmobranchii Hemiscylliidae Himantura Macrobothridium Myliobatidae Platyrhinidae Rajidae Rhinobatidae Rhinopterinae Rhynchobatidae Scyliorhinidae Taeniura Triakidae Urotrygonidae |
spellingShingle |
18S rDNA 28S rDNA Ahamulina Coronocestus Ditrachybothridium Echinobothrium Elasmobranchs Halysioncum 28s rDNA cytochrome c oxidase DNA 18S ribosome DNA unclassified drug cytochrome DNA flatworm morphology parasite phylogenetics RNA shark article cestode cladistics controlled study Coronocestus Diphyllidea Ditrachybothridium Echinobothrium Echinobothrium sensu stricto genus Halysioncum host Macrobothridium microbial morphology new genus nonhuman nucleotide sequence ordo parsimony analysis phylogeny scolex shark species unindexed sequence Animal Structures Animals Cestoda Electron Transport Complex IV Molecular Sequence Data Parasites Phylogeny RNA, Ribosomal, 18S RNA, Ribosomal, 28S Sequence Analysis, DNA Anacanthobatidae Batoidea Carcharhiniformes Cestoda Chondrichthyes Dasyatidae Dasyatis Diphyllidea Ditrachybothridium Echinobothrium Elasmobranchii Hemiscylliidae Himantura Macrobothridium Myliobatidae Platyrhinidae Rajidae Rhinobatidae Rhinopterinae Rhynchobatidae Scyliorhinidae Taeniura Triakidae Urotrygonidae Caira, J.N. Marques, F.P.L. Jensen, K. Kuchta, R. Ivanov, V. Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea |
topic_facet |
18S rDNA 28S rDNA Ahamulina Coronocestus Ditrachybothridium Echinobothrium Elasmobranchs Halysioncum 28s rDNA cytochrome c oxidase DNA 18S ribosome DNA unclassified drug cytochrome DNA flatworm morphology parasite phylogenetics RNA shark article cestode cladistics controlled study Coronocestus Diphyllidea Ditrachybothridium Echinobothrium Echinobothrium sensu stricto genus Halysioncum host Macrobothridium microbial morphology new genus nonhuman nucleotide sequence ordo parsimony analysis phylogeny scolex shark species unindexed sequence Animal Structures Animals Cestoda Electron Transport Complex IV Molecular Sequence Data Parasites Phylogeny RNA, Ribosomal, 18S RNA, Ribosomal, 28S Sequence Analysis, DNA Anacanthobatidae Batoidea Carcharhiniformes Cestoda Chondrichthyes Dasyatidae Dasyatis Diphyllidea Ditrachybothridium Echinobothrium Elasmobranchii Hemiscylliidae Himantura Macrobothridium Myliobatidae Platyrhinidae Rajidae Rhinobatidae Rhinopterinae Rhynchobatidae Scyliorhinidae Taeniura Triakidae Urotrygonidae |
description |
The generic boundaries of the Diphyllidea are reassessed based on parsimony and likelihood phylogenetic analyses of 28S rDNA (ribonucleic acid large subunit), 18S rDNA (ribonucleic acid small subunit), and COI (cytochrome oxidase subunit I) sequence data for 31 species representing morphological variation across the order. Trees resulting from these analyses yielded a number of well-supported clades that are congruent with unique morphological features mandating generic revision of the order and erection of at least two new genera. Species originally assigned to Echinobothrium van Beneden, 1849 but bearing a corona of spines on the region of the scolex anterior to the bothria and posterior to the apical organ armature are transferred to Coronocestus n. gen.; members of this genus typically parasitize triakid sharks, although one report from a hemiscylliid shark exists. Species with lateral hooklets arranged in continuous bands, rather than in two distinct clusters, are transferred to Halysioncum n. gen.; all species parasitize batoids, mostly myliobatids and rhinopterids, but a few records also exist from arhynchobatids, rhinobatids, platyrhinids and urotrygonids. Our analyses support transfer of the five species originally assigned to Macrobothridium Khalil and Abdul-Salam, 1989 owing to their lack of cephalic peduncle spines to Echinobothrium. As a consequence, Echinobothrium sensu stricto includes species both with and without spines on the cephalic peduncle, but all members of the genus possess lateral hooklets arranged in clusters on either side of the dorsal and ventral apical hooks. With respect to diphyllideans parasitizing catsharks, Ahamulina Marques, Jensen and Caira, 2012 is unique in possessing apical hooks but lacking lateral hooklets and Ditrachybothridium Rees, 1959 is unique in entirely lacking scolex armature. By far the majority of species of Echinobothrium sensu stricto parasitize skates of the family Rajidae, guitarfish of the family Rhinobatidae, and stingrays of the dasyatid genera Taeniura Müller and Henle, Dasyatis Rafinesque, and Himantura Müller and Henle, although a single species each has been reported from Anacanthobatidae, Rhynchobatidae, Platyrhinidae and Myliobatidae. It now seems clear that while by far the majority of diphyllideans parasitize batoids, the diphyllideans parasitizing sharks, and catsharks in particular, remain problematic. Additional collections from these carcharhiniform hosts are likely to be particularly illuminating. © 2013. |
format |
JOUR |
author |
Caira, J.N. Marques, F.P.L. Jensen, K. Kuchta, R. Ivanov, V. |
author_facet |
Caira, J.N. Marques, F.P.L. Jensen, K. Kuchta, R. Ivanov, V. |
author_sort |
Caira, J.N. |
title |
Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea |
title_short |
Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea |
title_full |
Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea |
title_fullStr |
Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea |
title_full_unstemmed |
Phylogenetic analysis and reconfiguration of genera in the cestode order Diphyllidea |
title_sort |
phylogenetic analysis and reconfiguration of genera in the cestode order diphyllidea |
url |
http://hdl.handle.net/20.500.12110/paper_00207519_v43_n8_p621_Caira |
work_keys_str_mv |
AT cairajn phylogeneticanalysisandreconfigurationofgenerainthecestodeorderdiphyllidea AT marquesfpl phylogeneticanalysisandreconfigurationofgenerainthecestodeorderdiphyllidea AT jensenk phylogeneticanalysisandreconfigurationofgenerainthecestodeorderdiphyllidea AT kuchtar phylogeneticanalysisandreconfigurationofgenerainthecestodeorderdiphyllidea AT ivanovv phylogeneticanalysisandreconfigurationofgenerainthecestodeorderdiphyllidea |
_version_ |
1807322631504920576 |