Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter

This paper develops a robust profile estimation method for the parametric and nonparametric components of a single-index model when the errors have a strongly unimodal density with unknown nuisance parameter. We derive consistency results for the link function estimators as well as consistency and a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Agostinelli, C., Bianco, A.M., Boente, G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00203157_v_n_p_Agostinelli
Aporte de:
id todo:paper_00203157_v_n_p_Agostinelli
record_format dspace
spelling todo:paper_00203157_v_n_p_Agostinelli2023-10-03T14:17:33Z Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter Agostinelli, C. Bianco, A.M. Boente, G. Fisher consistency Kernel weights Local polynomials Robustness Single-index models Errors Robustness (control systems) Asymptotic distributions Fisher consistency K fold cross validations Kernel weight Local polynomials Robustness properties Single index models Smoothing parameter Parameter estimation This paper develops a robust profile estimation method for the parametric and nonparametric components of a single-index model when the errors have a strongly unimodal density with unknown nuisance parameter. We derive consistency results for the link function estimators as well as consistency and asymptotic distribution results for the single-index parameter estimators. Under a log-Gamma model, the sensitivity to anomalous observations is studied using the empirical influence curve. We also discuss a robust K-fold cross-validation procedure to select the smoothing parameters. A numerical study carried on with errors following a log-Gamma model and for contaminated schemes shows the good robustness properties of the proposed estimators and the advantages of considering a robust approach instead of the classical one. A real data set illustrates the use of our proposal. © 2019, The Institute of Statistical Mathematics, Tokyo. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00203157_v_n_p_Agostinelli
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fisher consistency
Kernel weights
Local polynomials
Robustness
Single-index models
Errors
Robustness (control systems)
Asymptotic distributions
Fisher consistency
K fold cross validations
Kernel weight
Local polynomials
Robustness properties
Single index models
Smoothing parameter
Parameter estimation
spellingShingle Fisher consistency
Kernel weights
Local polynomials
Robustness
Single-index models
Errors
Robustness (control systems)
Asymptotic distributions
Fisher consistency
K fold cross validations
Kernel weight
Local polynomials
Robustness properties
Single index models
Smoothing parameter
Parameter estimation
Agostinelli, C.
Bianco, A.M.
Boente, G.
Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
topic_facet Fisher consistency
Kernel weights
Local polynomials
Robustness
Single-index models
Errors
Robustness (control systems)
Asymptotic distributions
Fisher consistency
K fold cross validations
Kernel weight
Local polynomials
Robustness properties
Single index models
Smoothing parameter
Parameter estimation
description This paper develops a robust profile estimation method for the parametric and nonparametric components of a single-index model when the errors have a strongly unimodal density with unknown nuisance parameter. We derive consistency results for the link function estimators as well as consistency and asymptotic distribution results for the single-index parameter estimators. Under a log-Gamma model, the sensitivity to anomalous observations is studied using the empirical influence curve. We also discuss a robust K-fold cross-validation procedure to select the smoothing parameters. A numerical study carried on with errors following a log-Gamma model and for contaminated schemes shows the good robustness properties of the proposed estimators and the advantages of considering a robust approach instead of the classical one. A real data set illustrates the use of our proposal. © 2019, The Institute of Statistical Mathematics, Tokyo.
format JOUR
author Agostinelli, C.
Bianco, A.M.
Boente, G.
author_facet Agostinelli, C.
Bianco, A.M.
Boente, G.
author_sort Agostinelli, C.
title Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
title_short Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
title_full Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
title_fullStr Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
title_full_unstemmed Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
title_sort robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter
url http://hdl.handle.net/20.500.12110/paper_00203157_v_n_p_Agostinelli
work_keys_str_mv AT agostinellic robustestimationinsingleindexmodelswhentheerrorshaveaunimodaldensitywithunknownnuisanceparameter
AT biancoam robustestimationinsingleindexmodelswhentheerrorshaveaunimodaldensitywithunknownnuisanceparameter
AT boenteg robustestimationinsingleindexmodelswhentheerrorshaveaunimodaldensitywithunknownnuisanceparameter
_version_ 1807316330795237376