Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of project...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea |
Aporte de: |
id |
todo:paper_00129593_v46_n4_p549_Doandrea |
---|---|
record_format |
dspace |
spelling |
todo:paper_00129593_v46_n4_p549_Doandrea2023-10-03T14:10:37Z Heights of varieties in multiprojective spaces and arithmetic nullstellensätze Dõandrea, C. Krick, T. Sombra, M. We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz. © 2013 Sociét. Mathématique de France. Tous droits réservé s. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sombra, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz. © 2013 Sociét. Mathématique de France. Tous droits réservé s. |
format |
JOUR |
author |
Dõandrea, C. Krick, T. Sombra, M. |
spellingShingle |
Dõandrea, C. Krick, T. Sombra, M. Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
author_facet |
Dõandrea, C. Krick, T. Sombra, M. |
author_sort |
Dõandrea, C. |
title |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_short |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_full |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_fullStr |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_full_unstemmed |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_sort |
heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
url |
http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea |
work_keys_str_mv |
AT doandreac heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze AT krickt heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze AT sombram heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze |
_version_ |
1807315508348846080 |