Heights of varieties in multiprojective spaces and arithmetic nullstellensätze

We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of project...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dõandrea, C., Krick, T., Sombra, M.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea
Aporte de:
id todo:paper_00129593_v46_n4_p549_Doandrea
record_format dspace
spelling todo:paper_00129593_v46_n4_p549_Doandrea2023-10-03T14:10:37Z Heights of varieties in multiprojective spaces and arithmetic nullstellensätze Dõandrea, C. Krick, T. Sombra, M. We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz. © 2013 Sociét. Mathématique de France. Tous droits réservé s. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sombra, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz. © 2013 Sociét. Mathématique de France. Tous droits réservé s.
format JOUR
author Dõandrea, C.
Krick, T.
Sombra, M.
spellingShingle Dõandrea, C.
Krick, T.
Sombra, M.
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
author_facet Dõandrea, C.
Krick, T.
Sombra, M.
author_sort Dõandrea, C.
title Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
title_short Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
title_full Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
title_fullStr Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
title_full_unstemmed Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
title_sort heights of varieties in multiprojective spaces and arithmetic nullstellensätze
url http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea
work_keys_str_mv AT doandreac heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze
AT krickt heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze
AT sombram heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze
_version_ 1807315508348846080