Anisotropic error estimates for an interpolant defined via moments
An interpolant defined via moments is investigated for triangles, quadrilaterals, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are allowed to have diameters with different asymptotic behavior in different space directions. Anisotropic interpolation error estimates a...
Guardado en:
Autores principales: | Acosta, G., Apel, T., Durán, R.G., Lombardi, A.L. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0010485X_v82_n1_p1_Acosta |
Aporte de: |
Ejemplares similares
-
Anisotropic error estimates for an interpolant defined via moments
por: Acosta Rodriguez, Gabriel, et al.
Publicado: (2008) -
Error estimates for the Raviart-Thomas interpolation under the maximum angle condition
por: Durán, R.G., et al. -
Error estimates for the Raviart-Thomas interpolation under the maximum angle condition
por: Duran, Ricardo Guillermo, et al.
Publicado: (2008) -
Error estimates for anisotropic finite elements and applications
por: Durán, R.G. -
Lagrange and average interpolation over 3D anisotropic elements
por: Acosta, G.