Anisotropic error estimates for an interpolant defined via moments

An interpolant defined via moments is investigated for triangles, quadrilaterals, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are allowed to have diameters with different asymptotic behavior in different space directions. Anisotropic interpolation error estimates a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Acosta, G., Apel, T., Durán, R.G., Lombardi, A.L.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0010485X_v82_n1_p1_Acosta
Aporte de:
id todo:paper_0010485X_v82_n1_p1_Acosta
record_format dspace
spelling todo:paper_0010485X_v82_n1_p1_Acosta2023-10-03T14:09:15Z Anisotropic error estimates for an interpolant defined via moments Acosta, G. Apel, T. Durán, R.G. Lombardi, A.L. Anisotropic finite elements Interpolation error estimate Asymptotic analysis Computational geometry Finite element method Interpolation Polynomial approximation Anisotropic finite elements Interpolation error estimate Error analysis An interpolant defined via moments is investigated for triangles, quadrilaterals, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are allowed to have diameters with different asymptotic behavior in different space directions. Anisotropic interpolation error estimates are proved. © 2008 Springer-Verlag Wien. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0010485X_v82_n1_p1_Acosta
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Anisotropic finite elements
Interpolation error estimate
Asymptotic analysis
Computational geometry
Finite element method
Interpolation
Polynomial approximation
Anisotropic finite elements
Interpolation error estimate
Error analysis
spellingShingle Anisotropic finite elements
Interpolation error estimate
Asymptotic analysis
Computational geometry
Finite element method
Interpolation
Polynomial approximation
Anisotropic finite elements
Interpolation error estimate
Error analysis
Acosta, G.
Apel, T.
Durán, R.G.
Lombardi, A.L.
Anisotropic error estimates for an interpolant defined via moments
topic_facet Anisotropic finite elements
Interpolation error estimate
Asymptotic analysis
Computational geometry
Finite element method
Interpolation
Polynomial approximation
Anisotropic finite elements
Interpolation error estimate
Error analysis
description An interpolant defined via moments is investigated for triangles, quadrilaterals, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are allowed to have diameters with different asymptotic behavior in different space directions. Anisotropic interpolation error estimates are proved. © 2008 Springer-Verlag Wien.
format JOUR
author Acosta, G.
Apel, T.
Durán, R.G.
Lombardi, A.L.
author_facet Acosta, G.
Apel, T.
Durán, R.G.
Lombardi, A.L.
author_sort Acosta, G.
title Anisotropic error estimates for an interpolant defined via moments
title_short Anisotropic error estimates for an interpolant defined via moments
title_full Anisotropic error estimates for an interpolant defined via moments
title_fullStr Anisotropic error estimates for an interpolant defined via moments
title_full_unstemmed Anisotropic error estimates for an interpolant defined via moments
title_sort anisotropic error estimates for an interpolant defined via moments
url http://hdl.handle.net/20.500.12110/paper_0010485X_v82_n1_p1_Acosta
work_keys_str_mv AT acostag anisotropicerrorestimatesforaninterpolantdefinedviamoments
AT apelt anisotropicerrorestimatesforaninterpolantdefinedviamoments
AT duranrg anisotropicerrorestimatesforaninterpolantdefinedviamoments
AT lombardial anisotropicerrorestimatesforaninterpolantdefinedviamoments
_version_ 1807319358002692096