Anisotropic error estimates for an interpolant defined via moments
An interpolant defined via moments is investigated for triangles, quadrilaterals, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are allowed to have diameters with different asymptotic behavior in different space directions. Anisotropic interpolation error estimates a...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0010485X_v82_n1_p1_Acosta |
Aporte de: |
id |
todo:paper_0010485X_v82_n1_p1_Acosta |
---|---|
record_format |
dspace |
spelling |
todo:paper_0010485X_v82_n1_p1_Acosta2023-10-03T14:09:15Z Anisotropic error estimates for an interpolant defined via moments Acosta, G. Apel, T. Durán, R.G. Lombardi, A.L. Anisotropic finite elements Interpolation error estimate Asymptotic analysis Computational geometry Finite element method Interpolation Polynomial approximation Anisotropic finite elements Interpolation error estimate Error analysis An interpolant defined via moments is investigated for triangles, quadrilaterals, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are allowed to have diameters with different asymptotic behavior in different space directions. Anisotropic interpolation error estimates are proved. © 2008 Springer-Verlag Wien. Fil:Acosta, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lombardi, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0010485X_v82_n1_p1_Acosta |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Anisotropic finite elements Interpolation error estimate Asymptotic analysis Computational geometry Finite element method Interpolation Polynomial approximation Anisotropic finite elements Interpolation error estimate Error analysis |
spellingShingle |
Anisotropic finite elements Interpolation error estimate Asymptotic analysis Computational geometry Finite element method Interpolation Polynomial approximation Anisotropic finite elements Interpolation error estimate Error analysis Acosta, G. Apel, T. Durán, R.G. Lombardi, A.L. Anisotropic error estimates for an interpolant defined via moments |
topic_facet |
Anisotropic finite elements Interpolation error estimate Asymptotic analysis Computational geometry Finite element method Interpolation Polynomial approximation Anisotropic finite elements Interpolation error estimate Error analysis |
description |
An interpolant defined via moments is investigated for triangles, quadrilaterals, tetrahedra, and hexahedra and arbitrarily high polynomial degree. The elements are allowed to have diameters with different asymptotic behavior in different space directions. Anisotropic interpolation error estimates are proved. © 2008 Springer-Verlag Wien. |
format |
JOUR |
author |
Acosta, G. Apel, T. Durán, R.G. Lombardi, A.L. |
author_facet |
Acosta, G. Apel, T. Durán, R.G. Lombardi, A.L. |
author_sort |
Acosta, G. |
title |
Anisotropic error estimates for an interpolant defined via moments |
title_short |
Anisotropic error estimates for an interpolant defined via moments |
title_full |
Anisotropic error estimates for an interpolant defined via moments |
title_fullStr |
Anisotropic error estimates for an interpolant defined via moments |
title_full_unstemmed |
Anisotropic error estimates for an interpolant defined via moments |
title_sort |
anisotropic error estimates for an interpolant defined via moments |
url |
http://hdl.handle.net/20.500.12110/paper_0010485X_v82_n1_p1_Acosta |
work_keys_str_mv |
AT acostag anisotropicerrorestimatesforaninterpolantdefinedviamoments AT apelt anisotropicerrorestimatesforaninterpolantdefinedviamoments AT duranrg anisotropicerrorestimatesforaninterpolantdefinedviamoments AT lombardial anisotropicerrorestimatesforaninterpolantdefinedviamoments |
_version_ |
1807319358002692096 |