A global two-temperature corona and inner heliosphere model: A comprehensive validation study

The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft vali...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jin, M., Manchester, W.B., Van Der Holst, B., Gruesbeck, J.R., Frazin, R.A., Landi, E., Vasquez, A.M., Lamy, P.L., Llebaria, A., Fedorov, A., Toth, G., Gombosi, T.I.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0004637X_v745_n1_p_Jin
Aporte de:
id todo:paper_0004637X_v745_n1_p_Jin
record_format dspace
spelling todo:paper_0004637X_v745_n1_p_Jin2023-10-03T14:02:17Z A global two-temperature corona and inner heliosphere model: A comprehensive validation study Jin, M. Manchester, W.B. Van Der Holst, B. Gruesbeck, J.R. Frazin, R.A. Landi, E. Vasquez, A.M. Lamy, P.L. Llebaria, A. Fedorov, A. Toth, G. Gombosi, T.I. interplanetary medium magnetohydrodynamics (MHD) methods: numerical solar wind Sun: corona The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved. Fil:Vasquez, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0004637X_v745_n1_p_Jin
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic interplanetary medium
magnetohydrodynamics (MHD)
methods: numerical
solar wind
Sun: corona
spellingShingle interplanetary medium
magnetohydrodynamics (MHD)
methods: numerical
solar wind
Sun: corona
Jin, M.
Manchester, W.B.
Van Der Holst, B.
Gruesbeck, J.R.
Frazin, R.A.
Landi, E.
Vasquez, A.M.
Lamy, P.L.
Llebaria, A.
Fedorov, A.
Toth, G.
Gombosi, T.I.
A global two-temperature corona and inner heliosphere model: A comprehensive validation study
topic_facet interplanetary medium
magnetohydrodynamics (MHD)
methods: numerical
solar wind
Sun: corona
description The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfvén-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks. © 2012. The American Astronomical Society. All rights reserved.
format JOUR
author Jin, M.
Manchester, W.B.
Van Der Holst, B.
Gruesbeck, J.R.
Frazin, R.A.
Landi, E.
Vasquez, A.M.
Lamy, P.L.
Llebaria, A.
Fedorov, A.
Toth, G.
Gombosi, T.I.
author_facet Jin, M.
Manchester, W.B.
Van Der Holst, B.
Gruesbeck, J.R.
Frazin, R.A.
Landi, E.
Vasquez, A.M.
Lamy, P.L.
Llebaria, A.
Fedorov, A.
Toth, G.
Gombosi, T.I.
author_sort Jin, M.
title A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_short A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_full A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_fullStr A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_full_unstemmed A global two-temperature corona and inner heliosphere model: A comprehensive validation study
title_sort global two-temperature corona and inner heliosphere model: a comprehensive validation study
url http://hdl.handle.net/20.500.12110/paper_0004637X_v745_n1_p_Jin
work_keys_str_mv AT jinm aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT manchesterwb aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT vanderholstb aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT gruesbeckjr aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT frazinra aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT landie aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT vasquezam aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT lamypl aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT llebariaa aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT fedorova aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT tothg aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT gombositi aglobaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT jinm globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT manchesterwb globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT vanderholstb globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT gruesbeckjr globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT frazinra globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT landie globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT vasquezam globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT lamypl globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT llebariaa globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT fedorova globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT tothg globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
AT gombositi globaltwotemperaturecoronaandinnerheliospheremodelacomprehensivevalidationstudy
_version_ 1782023961453789184