Thermal regime and spatial variability of the active layer in Deception Island, Antarctica
The Circumpolar Active Layer Monitoring (CALM) program developed over the last two decades has a leading edge in comprehensive efforts to study the impacts of climate change in permafrost environments. This paper describes results obtained during the last six years, on the active layer thickness, th...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00044822_v71_n1_p_Goyanes |
Aporte de: |
id |
todo:paper_00044822_v71_n1_p_Goyanes |
---|---|
record_format |
dspace |
spelling |
todo:paper_00044822_v71_n1_p_Goyanes2023-10-03T13:59:03Z Thermal regime and spatial variability of the active layer in Deception Island, Antarctica Goyanes, G. Vieira, G. Caselli, A. Mora, C. Ramos, M. de Pablo, M.A. Neves, M. Santos, F. Bernardo, I. Gilichinsky, D. Abramov, A. Batista, V. Melo, R. Trindade Nieuwendam, A. Ferreira, A. Oliva, M. Active layer Antarctica Permafrost South Shetland Thermal state active layer air temperature climate effect crater lake lithology permafrost snow cover solar radiation spatial variation thermal regime topography wind Antarctica Deception Island South Shetland Islands The Circumpolar Active Layer Monitoring (CALM) program developed over the last two decades has a leading edge in comprehensive efforts to study the impacts of climate change in permafrost environments. This paper describes results obtained during the last six years, on the active layer thickness, thermal regime and spatial patterns of thaw, at the CALM-S Irizar, Crater Lake and Refugio Chileno sites in Deception Island. In Irizar and Refugio Chileno CALM-S sites the active layer depth varied interannually without any clear trend over the short record available. By contrast, Crater Lake CALM-S showed a slight thinning trend. In all sites, the spatial patterns of thaw and active layer thickness were mainly controlled by snow cover conditions, lithology and the effect of aspect on wind. The relief, the detailed topography and the effect of aspect on solar radiation also exert a local control over its patterns. Air temperature and snow cover controlled the thermal state of active layer. In absence of snow, the use of depth penetration model of the 0 °C isotherm allowed approximated satisfactorily active layer thickness. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00044822_v71_n1_p_Goyanes |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Active layer Antarctica Permafrost South Shetland Thermal state active layer air temperature climate effect crater lake lithology permafrost snow cover solar radiation spatial variation thermal regime topography wind Antarctica Deception Island South Shetland Islands |
spellingShingle |
Active layer Antarctica Permafrost South Shetland Thermal state active layer air temperature climate effect crater lake lithology permafrost snow cover solar radiation spatial variation thermal regime topography wind Antarctica Deception Island South Shetland Islands Goyanes, G. Vieira, G. Caselli, A. Mora, C. Ramos, M. de Pablo, M.A. Neves, M. Santos, F. Bernardo, I. Gilichinsky, D. Abramov, A. Batista, V. Melo, R. Trindade Nieuwendam, A. Ferreira, A. Oliva, M. Thermal regime and spatial variability of the active layer in Deception Island, Antarctica |
topic_facet |
Active layer Antarctica Permafrost South Shetland Thermal state active layer air temperature climate effect crater lake lithology permafrost snow cover solar radiation spatial variation thermal regime topography wind Antarctica Deception Island South Shetland Islands |
description |
The Circumpolar Active Layer Monitoring (CALM) program developed over the last two decades has a leading edge in comprehensive efforts to study the impacts of climate change in permafrost environments. This paper describes results obtained during the last six years, on the active layer thickness, thermal regime and spatial patterns of thaw, at the CALM-S Irizar, Crater Lake and Refugio Chileno sites in Deception Island. In Irizar and Refugio Chileno CALM-S sites the active layer depth varied interannually without any clear trend over the short record available. By contrast, Crater Lake CALM-S showed a slight thinning trend. In all sites, the spatial patterns of thaw and active layer thickness were mainly controlled by snow cover conditions, lithology and the effect of aspect on wind. The relief, the detailed topography and the effect of aspect on solar radiation also exert a local control over its patterns. Air temperature and snow cover controlled the thermal state of active layer. In absence of snow, the use of depth penetration model of the 0 °C isotherm allowed approximated satisfactorily active layer thickness. |
format |
JOUR |
author |
Goyanes, G. Vieira, G. Caselli, A. Mora, C. Ramos, M. de Pablo, M.A. Neves, M. Santos, F. Bernardo, I. Gilichinsky, D. Abramov, A. Batista, V. Melo, R. Trindade Nieuwendam, A. Ferreira, A. Oliva, M. |
author_facet |
Goyanes, G. Vieira, G. Caselli, A. Mora, C. Ramos, M. de Pablo, M.A. Neves, M. Santos, F. Bernardo, I. Gilichinsky, D. Abramov, A. Batista, V. Melo, R. Trindade Nieuwendam, A. Ferreira, A. Oliva, M. |
author_sort |
Goyanes, G. |
title |
Thermal regime and spatial variability of the active layer in Deception Island, Antarctica |
title_short |
Thermal regime and spatial variability of the active layer in Deception Island, Antarctica |
title_full |
Thermal regime and spatial variability of the active layer in Deception Island, Antarctica |
title_fullStr |
Thermal regime and spatial variability of the active layer in Deception Island, Antarctica |
title_full_unstemmed |
Thermal regime and spatial variability of the active layer in Deception Island, Antarctica |
title_sort |
thermal regime and spatial variability of the active layer in deception island, antarctica |
url |
http://hdl.handle.net/20.500.12110/paper_00044822_v71_n1_p_Goyanes |
work_keys_str_mv |
AT goyanesg thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT vieirag thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT casellia thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT morac thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT ramosm thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT depabloma thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT nevesm thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT santosf thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT bernardoi thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT gilichinskyd thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT abramova thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT batistav thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT melor thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT trindadenieuwendama thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT ferreiraa thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica AT olivam thermalregimeandspatialvariabilityoftheactivelayerindeceptionislandantarctica |
_version_ |
1807319841521008640 |