How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. W...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00039527_v187_n1_p137_Cortazar |
Aporte de: |
id |
todo:paper_00039527_v187_n1_p137_Cortazar |
---|---|
record_format |
dspace |
spelling |
todo:paper_00039527_v187_n1_p137_Cortazar2023-10-03T13:56:44Z How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems Cortazar, C. Elgueta, M. Rossi, J.D. Wolanski, N. We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions. © 2007 Springer-Verlag. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00039527_v187_n1_p137_Cortazar |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions. © 2007 Springer-Verlag. |
format |
JOUR |
author |
Cortazar, C. Elgueta, M. Rossi, J.D. Wolanski, N. |
spellingShingle |
Cortazar, C. Elgueta, M. Rossi, J.D. Wolanski, N. How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
author_facet |
Cortazar, C. Elgueta, M. Rossi, J.D. Wolanski, N. |
author_sort |
Cortazar, C. |
title |
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
title_short |
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
title_full |
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
title_fullStr |
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
title_full_unstemmed |
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems |
title_sort |
how to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems |
url |
http://hdl.handle.net/20.500.12110/paper_00039527_v187_n1_p137_Cortazar |
work_keys_str_mv |
AT cortazarc howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems AT elguetam howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems AT rossijd howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems AT wolanskin howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems |
_version_ |
1807322266618298368 |