How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems

We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. W...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00039527_v187_n1_p137_Cortazar
Aporte de:
id todo:paper_00039527_v187_n1_p137_Cortazar
record_format dspace
spelling todo:paper_00039527_v187_n1_p137_Cortazar2023-10-03T13:56:44Z How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems Cortazar, C. Elgueta, M. Rossi, J.D. Wolanski, N. We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions. © 2007 Springer-Verlag. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Wolanski, N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00039527_v187_n1_p137_Cortazar
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions. © 2007 Springer-Verlag.
format JOUR
author Cortazar, C.
Elgueta, M.
Rossi, J.D.
Wolanski, N.
spellingShingle Cortazar, C.
Elgueta, M.
Rossi, J.D.
Wolanski, N.
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
author_facet Cortazar, C.
Elgueta, M.
Rossi, J.D.
Wolanski, N.
author_sort Cortazar, C.
title How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
title_short How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
title_full How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
title_fullStr How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
title_full_unstemmed How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
title_sort how to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems
url http://hdl.handle.net/20.500.12110/paper_00039527_v187_n1_p137_Cortazar
work_keys_str_mv AT cortazarc howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems
AT elguetam howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems
AT rossijd howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems
AT wolanskin howtoapproximatetheheatequationwithneumannboundaryconditionsbynonlocaldiffusionproblems
_version_ 1807322266618298368