Nonlocal higher order evolution equations
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the s...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00036811_v89_n6_p949_Rossi |
Aporte de: |
id |
todo:paper_00036811_v89_n6_p949_Rossi |
---|---|
record_format |
dspace |
spelling |
todo:paper_00036811_v89_n6_p949_Rossi2023-10-03T13:56:31Z Nonlocal higher order evolution equations Rossi, J.D. Schönlieb, C.-B. Asymptotic behaviour Higher order Nonlocal diffusion In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00036811_v89_n6_p949_Rossi |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Asymptotic behaviour Higher order Nonlocal diffusion |
spellingShingle |
Asymptotic behaviour Higher order Nonlocal diffusion Rossi, J.D. Schönlieb, C.-B. Nonlocal higher order evolution equations |
topic_facet |
Asymptotic behaviour Higher order Nonlocal diffusion |
description |
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis. |
format |
JOUR |
author |
Rossi, J.D. Schönlieb, C.-B. |
author_facet |
Rossi, J.D. Schönlieb, C.-B. |
author_sort |
Rossi, J.D. |
title |
Nonlocal higher order evolution equations |
title_short |
Nonlocal higher order evolution equations |
title_full |
Nonlocal higher order evolution equations |
title_fullStr |
Nonlocal higher order evolution equations |
title_full_unstemmed |
Nonlocal higher order evolution equations |
title_sort |
nonlocal higher order evolution equations |
url |
http://hdl.handle.net/20.500.12110/paper_00036811_v89_n6_p949_Rossi |
work_keys_str_mv |
AT rossijd nonlocalhigherorderevolutionequations AT schonliebcb nonlocalhigherorderevolutionequations |
_version_ |
1807317889685913600 |