Extreme and exposed points of spaces of integral polynomials
We show that if E is a real Banach space such that E′ has the approximation property and such that ℓ1 → ⊗ n,s,e,E, then the set of extreme points of the unit ball of PI (nE) is equal to {± Φn: Φ ∈ E′ ∥ Φ ∥ = 1}. Under the additional assumption that E′ has a countable norming set, we see that the set...
Guardado en:
Autores principales: | Boyd, C., Lassalle, S. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v138_n4_p1415_Boyd |
Aporte de: |
Ejemplares similares
-
Extreme and exposed points of spaces of integral polynomials
por: Lassalle, Silvia Beatriz
Publicado: (2010) -
Geometry of integral polynomials, M-ideals and unique norm preserving extensions
por: Dimant, Verónica, et al.
Publicado: (2012) -
Geometry of integral polynomials, M-ideals and unique norm preserving extensions
por: Dimant, V., et al. -
Extreme values, regular variation and point processes /
por: Resnick, Sidney I.
Publicado: (2008) -
Factoring bivariate sparse (lacunary) polynomials
por: Avendaño, Martín, et al.
Publicado: (2007)