Hochschild cohomology of Frobenius algebras

Let k be a field, A a finite-dimensional Frobenius k-algebra and ρ: A → A, the Nakayama automorphism of A with respect to a Frobenius homomorphism φ: A → k. Assume that k has finite order m and that k has a primitive m-th root of unity w. Consider the decomposition A = A0 ⊕ ... ⊕ Am-1 of A, obtained...

Descripción completa

Detalles Bibliográficos
Autores principales: Guccione, J.A., Guccione, J.J.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v132_n5_p1241_Guccione
Aporte de:
id todo:paper_00029939_v132_n5_p1241_Guccione
record_format dspace
spelling todo:paper_00029939_v132_n5_p1241_Guccione2023-10-03T13:55:07Z Hochschild cohomology of Frobenius algebras Guccione, J.A. Guccione, J.J. Let k be a field, A a finite-dimensional Frobenius k-algebra and ρ: A → A, the Nakayama automorphism of A with respect to a Frobenius homomorphism φ: A → k. Assume that k has finite order m and that k has a primitive m-th root of unity w. Consider the decomposition A = A0 ⊕ ... ⊕ Am-1 of A, obtained by defining Ai = {a ∈ A : ρ(a) = wia}, and the decomposition HH*(A) = ⊕i=0 m-1 HHi* Hochschild cohomology of A, obtained from the decomposition of A. In this paper we prove that HH*(A) = HH0*(A) and that if the decomposition of A is strongly ℤ/mℤ-graded, then ℤ/mℤ acts on HH*(A 0) and HH*(A) = HH0*(A) = HH*(A 0)ℤ/mℤ. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v132_n5_p1241_Guccione
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Let k be a field, A a finite-dimensional Frobenius k-algebra and ρ: A → A, the Nakayama automorphism of A with respect to a Frobenius homomorphism φ: A → k. Assume that k has finite order m and that k has a primitive m-th root of unity w. Consider the decomposition A = A0 ⊕ ... ⊕ Am-1 of A, obtained by defining Ai = {a ∈ A : ρ(a) = wia}, and the decomposition HH*(A) = ⊕i=0 m-1 HHi* Hochschild cohomology of A, obtained from the decomposition of A. In this paper we prove that HH*(A) = HH0*(A) and that if the decomposition of A is strongly ℤ/mℤ-graded, then ℤ/mℤ acts on HH*(A 0) and HH*(A) = HH0*(A) = HH*(A 0)ℤ/mℤ.
format JOUR
author Guccione, J.A.
Guccione, J.J.
spellingShingle Guccione, J.A.
Guccione, J.J.
Hochschild cohomology of Frobenius algebras
author_facet Guccione, J.A.
Guccione, J.J.
author_sort Guccione, J.A.
title Hochschild cohomology of Frobenius algebras
title_short Hochschild cohomology of Frobenius algebras
title_full Hochschild cohomology of Frobenius algebras
title_fullStr Hochschild cohomology of Frobenius algebras
title_full_unstemmed Hochschild cohomology of Frobenius algebras
title_sort hochschild cohomology of frobenius algebras
url http://hdl.handle.net/20.500.12110/paper_00029939_v132_n5_p1241_Guccione
work_keys_str_mv AT guccioneja hochschildcohomologyoffrobeniusalgebras
AT guccionejj hochschildcohomologyoffrobeniusalgebras
_version_ 1807314699803426816