Hochschild cohomology of Frobenius algebras
Let k be a field, A a finite-dimensional Frobenius k-algebra and ρ: A → A, the Nakayama automorphism of A with respect to a Frobenius homomorphism φ: A → k. Assume that k has finite order m and that k has a primitive m-th root of unity w. Consider the decomposition A = A0 ⊕ ... ⊕ Am-1 of A, obtained...
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v132_n5_p1241_Guccione |
Aporte de: |
id |
todo:paper_00029939_v132_n5_p1241_Guccione |
---|---|
record_format |
dspace |
spelling |
todo:paper_00029939_v132_n5_p1241_Guccione2023-10-03T13:55:07Z Hochschild cohomology of Frobenius algebras Guccione, J.A. Guccione, J.J. Let k be a field, A a finite-dimensional Frobenius k-algebra and ρ: A → A, the Nakayama automorphism of A with respect to a Frobenius homomorphism φ: A → k. Assume that k has finite order m and that k has a primitive m-th root of unity w. Consider the decomposition A = A0 ⊕ ... ⊕ Am-1 of A, obtained by defining Ai = {a ∈ A : ρ(a) = wia}, and the decomposition HH*(A) = ⊕i=0 m-1 HHi* Hochschild cohomology of A, obtained from the decomposition of A. In this paper we prove that HH*(A) = HH0*(A) and that if the decomposition of A is strongly ℤ/mℤ-graded, then ℤ/mℤ acts on HH*(A 0) and HH*(A) = HH0*(A) = HH*(A 0)ℤ/mℤ. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v132_n5_p1241_Guccione |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let k be a field, A a finite-dimensional Frobenius k-algebra and ρ: A → A, the Nakayama automorphism of A with respect to a Frobenius homomorphism φ: A → k. Assume that k has finite order m and that k has a primitive m-th root of unity w. Consider the decomposition A = A0 ⊕ ... ⊕ Am-1 of A, obtained by defining Ai = {a ∈ A : ρ(a) = wia}, and the decomposition HH*(A) = ⊕i=0 m-1 HHi* Hochschild cohomology of A, obtained from the decomposition of A. In this paper we prove that HH*(A) = HH0*(A) and that if the decomposition of A is strongly ℤ/mℤ-graded, then ℤ/mℤ acts on HH*(A 0) and HH*(A) = HH0*(A) = HH*(A 0)ℤ/mℤ. |
format |
JOUR |
author |
Guccione, J.A. Guccione, J.J. |
spellingShingle |
Guccione, J.A. Guccione, J.J. Hochschild cohomology of Frobenius algebras |
author_facet |
Guccione, J.A. Guccione, J.J. |
author_sort |
Guccione, J.A. |
title |
Hochschild cohomology of Frobenius algebras |
title_short |
Hochschild cohomology of Frobenius algebras |
title_full |
Hochschild cohomology of Frobenius algebras |
title_fullStr |
Hochschild cohomology of Frobenius algebras |
title_full_unstemmed |
Hochschild cohomology of Frobenius algebras |
title_sort |
hochschild cohomology of frobenius algebras |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v132_n5_p1241_Guccione |
work_keys_str_mv |
AT guccioneja hochschildcohomologyoffrobeniusalgebras AT guccionejj hochschildcohomologyoffrobeniusalgebras |
_version_ |
1807314699803426816 |