Periodic motions in forced problems of Kepler type

A Newtonian equation in the plane is considered. There is a central force (attractive or repulsive) and an external force λh(t), periodic in time. The periodic second primitive of h(t) defines a planar curve and the number of periodic solutions of the differential equation is linked to the number of...

Descripción completa

Detalles Bibliográficos
Autores principales: Amster, P., Haddad, J., Ortega, R., Ureña, A.J.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10219722_v18_n6_p649_Amster
Aporte de:
id paperaa:paper_10219722_v18_n6_p649_Amster
record_format dspace
spelling paperaa:paper_10219722_v18_n6_p649_Amster2023-06-12T16:48:54Z Periodic motions in forced problems of Kepler type Nonlinear Diff. Equ. Appl. 2011;18(6):649-657 Amster, P. Haddad, J. Ortega, R. Ureña, A.J. Averaging method Central force Forced oscillation Winding number A Newtonian equation in the plane is considered. There is a central force (attractive or repulsive) and an external force λh(t), periodic in time. The periodic second primitive of h(t) defines a planar curve and the number of periodic solutions of the differential equation is linked to the number of loops of this curve, at least when the parameter λ is large. © 2011 Springer Basel AG. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Haddad, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10219722_v18_n6_p649_Amster
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic Averaging method
Central force
Forced oscillation
Winding number
spellingShingle Averaging method
Central force
Forced oscillation
Winding number
Amster, P.
Haddad, J.
Ortega, R.
Ureña, A.J.
Periodic motions in forced problems of Kepler type
topic_facet Averaging method
Central force
Forced oscillation
Winding number
description A Newtonian equation in the plane is considered. There is a central force (attractive or repulsive) and an external force λh(t), periodic in time. The periodic second primitive of h(t) defines a planar curve and the number of periodic solutions of the differential equation is linked to the number of loops of this curve, at least when the parameter λ is large. © 2011 Springer Basel AG.
format Artículo
Artículo
publishedVersion
author Amster, P.
Haddad, J.
Ortega, R.
Ureña, A.J.
author_facet Amster, P.
Haddad, J.
Ortega, R.
Ureña, A.J.
author_sort Amster, P.
title Periodic motions in forced problems of Kepler type
title_short Periodic motions in forced problems of Kepler type
title_full Periodic motions in forced problems of Kepler type
title_fullStr Periodic motions in forced problems of Kepler type
title_full_unstemmed Periodic motions in forced problems of Kepler type
title_sort periodic motions in forced problems of kepler type
publishDate 2011
url http://hdl.handle.net/20.500.12110/paper_10219722_v18_n6_p649_Amster
work_keys_str_mv AT amsterp periodicmotionsinforcedproblemsofkeplertype
AT haddadj periodicmotionsinforcedproblemsofkeplertype
AT ortegar periodicmotionsinforcedproblemsofkeplertype
AT urenaaj periodicmotionsinforcedproblemsofkeplertype
_version_ 1769810239136202752