Extension of vector-valued integral polynomials
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral po...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Artículo publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
2005
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
| Aporte de: |
| id |
paperaa:paper_0022247X_v307_n1_p77_Carando |
|---|---|
| record_format |
dspace |
| spelling |
paperaa:paper_0022247X_v307_n1_p77_Carando2023-06-12T16:44:05Z Extension of vector-valued integral polynomials J. Math. Anal. Appl. 2005;307(1):77-85 Carando, D. Lassalle, S. Extendibility Integral polynomials We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| language |
Inglés |
| orig_language_str_mv |
eng |
| topic |
Extendibility Integral polynomials |
| spellingShingle |
Extendibility Integral polynomials Carando, D. Lassalle, S. Extension of vector-valued integral polynomials |
| topic_facet |
Extendibility Integral polynomials |
| description |
We study the extendibility of integral vector-valued polynomials on Banach spaces. We prove that an X-valued Pietsch-integral polynomial on E extends to an X-valued Pietsch-integral polynomial on any space F containing E, with the same integral norm. This is not the case for Grothendieck-integral polynomials: they do not always extend to X-valued Grothendieck-integral polynomials. However, they are extendible to X-valued polynomials. The Aron-Berner extension of an integral polynomial is also studied. A canonical integral representation is given for domains not containing ℓ1. © 2004 Elsevier Inc. All rights reserved. |
| format |
Artículo Artículo publishedVersion |
| author |
Carando, D. Lassalle, S. |
| author_facet |
Carando, D. Lassalle, S. |
| author_sort |
Carando, D. |
| title |
Extension of vector-valued integral polynomials |
| title_short |
Extension of vector-valued integral polynomials |
| title_full |
Extension of vector-valued integral polynomials |
| title_fullStr |
Extension of vector-valued integral polynomials |
| title_full_unstemmed |
Extension of vector-valued integral polynomials |
| title_sort |
extension of vector-valued integral polynomials |
| publishDate |
2005 |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v307_n1_p77_Carando |
| work_keys_str_mv |
AT carandod extensionofvectorvaluedintegralpolynomials AT lassalles extensionofvectorvaluedintegralpolynomials |
| _version_ |
1769810165706522624 |