Model of the boundary layer of a vacuum-arc magnetic filter

A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Minotti, F., Giuliani, L., Grondona, D., Della Torre, H., Kelly, H.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218979_v113_n11_p_Minotti
Aporte de:
id paperaa:paper_00218979_v113_n11_p_Minotti
record_format dspace
spelling paperaa:paper_00218979_v113_n11_p_Minotti2023-06-12T16:42:37Z Model of the boundary layer of a vacuum-arc magnetic filter J Appl Phys 2013;113(11) Minotti, F. Giuliani, L. Grondona, D. Della Torre, H. Kelly, H. Collision term Collisionality Different-magnetic fields Electron mass Electron momentum equations Filtered arc Microinstabilities Boundary layers Carrier concentration Electron density measurement Electrons Magnetic filters Poisson equation Probes Wall function A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter. © 2013 American Institute of Physics. Fil:Minotti, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Giuliani, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Grondona, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Kelly, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218979_v113_n11_p_Minotti
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic Collision term
Collisionality
Different-magnetic fields
Electron mass
Electron momentum equations
Filtered arc
Microinstabilities
Boundary layers
Carrier concentration
Electron density measurement
Electrons
Magnetic filters
Poisson equation
Probes
Wall function
spellingShingle Collision term
Collisionality
Different-magnetic fields
Electron mass
Electron momentum equations
Filtered arc
Microinstabilities
Boundary layers
Carrier concentration
Electron density measurement
Electrons
Magnetic filters
Poisson equation
Probes
Wall function
Minotti, F.
Giuliani, L.
Grondona, D.
Della Torre, H.
Kelly, H.
Model of the boundary layer of a vacuum-arc magnetic filter
topic_facet Collision term
Collisionality
Different-magnetic fields
Electron mass
Electron momentum equations
Filtered arc
Microinstabilities
Boundary layers
Carrier concentration
Electron density measurement
Electrons
Magnetic filters
Poisson equation
Probes
Wall function
description A model is developed to describe the electrostatic boundary layer in a positively biased magnetic filter in filtered arcs with low collisionality. The set of equations used includes the electron momentum equation, with an anomalous collision term due to micro-instabilities leading to Bohm diffusion, electron mass conservation, and Poisson equation. Analytical solutions are obtained, valid for the regimes of interest, leading to an explicit expression to determine the electron density current to the filter wall as a function of the potential of the filter and the ratio of electron density at the plasma to that at the filter wall. Using a set of planar and cylindrical probes it is verified experimentally that the mentioned ratio of electron densities remains reasonably constant for different magnetic field values and probe bias, which allows to obtain a closed expression for the current. Comparisons are made with the experimentally determined current collected at different sections of a positively biased straight filter. © 2013 American Institute of Physics.
format Artículo
Artículo
publishedVersion
author Minotti, F.
Giuliani, L.
Grondona, D.
Della Torre, H.
Kelly, H.
author_facet Minotti, F.
Giuliani, L.
Grondona, D.
Della Torre, H.
Kelly, H.
author_sort Minotti, F.
title Model of the boundary layer of a vacuum-arc magnetic filter
title_short Model of the boundary layer of a vacuum-arc magnetic filter
title_full Model of the boundary layer of a vacuum-arc magnetic filter
title_fullStr Model of the boundary layer of a vacuum-arc magnetic filter
title_full_unstemmed Model of the boundary layer of a vacuum-arc magnetic filter
title_sort model of the boundary layer of a vacuum-arc magnetic filter
publishDate 2013
url http://hdl.handle.net/20.500.12110/paper_00218979_v113_n11_p_Minotti
work_keys_str_mv AT minottif modeloftheboundarylayerofavacuumarcmagneticfilter
AT giulianil modeloftheboundarylayerofavacuumarcmagneticfilter
AT grondonad modeloftheboundarylayerofavacuumarcmagneticfilter
AT dellatorreh modeloftheboundarylayerofavacuumarcmagneticfilter
AT kellyh modeloftheboundarylayerofavacuumarcmagneticfilter
_version_ 1769810267861942272