Braided module and comodule algebras, Galois extensions and elements of trace 1

Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Da Rocha, M., Guccione, J.A., Guccione, J.J.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha
Aporte de:
id paperaa:paper_00218693_v307_n2_p727_DaRocha
record_format dspace
spelling paperaa:paper_00218693_v307_n2_p727_DaRocha2023-06-12T16:42:24Z Braided module and comodule algebras, Galois extensions and elements of trace 1 J. Algebra 2007;307(2):727-768 Da Rocha, M. Guccione, J.A. Guccione, J.J. Braided Hopf algebras Crossed products Galois extensions Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006. Fil:Guccione, J.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Guccione, J.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2007 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic Braided Hopf algebras
Crossed products
Galois extensions
spellingShingle Braided Hopf algebras
Crossed products
Galois extensions
Da Rocha, M.
Guccione, J.A.
Guccione, J.J.
Braided module and comodule algebras, Galois extensions and elements of trace 1
topic_facet Braided Hopf algebras
Crossed products
Galois extensions
description Let k be a field and let H be a rigid braided Hopf k-algebra. In this paper we continue the study of the theory of braided Hopf crossed products began in [J.A. Guccione, J.J. Guccione, Theory of braided Hopf crossed products, J. Algebra 261 (2003) 54-101]. First we show that to have an H-braided comodule algebra is the same that to have an H†-braided module algebra, where H† is a variant of H*, and then we study the maps [,] and (,), that appear in the Morita context introduced in the above cited paper. © 2006.
format Artículo
Artículo
publishedVersion
author Da Rocha, M.
Guccione, J.A.
Guccione, J.J.
author_facet Da Rocha, M.
Guccione, J.A.
Guccione, J.J.
author_sort Da Rocha, M.
title Braided module and comodule algebras, Galois extensions and elements of trace 1
title_short Braided module and comodule algebras, Galois extensions and elements of trace 1
title_full Braided module and comodule algebras, Galois extensions and elements of trace 1
title_fullStr Braided module and comodule algebras, Galois extensions and elements of trace 1
title_full_unstemmed Braided module and comodule algebras, Galois extensions and elements of trace 1
title_sort braided module and comodule algebras, galois extensions and elements of trace 1
publishDate 2007
url http://hdl.handle.net/20.500.12110/paper_00218693_v307_n2_p727_DaRocha
work_keys_str_mv AT darocham braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1
AT guccioneja braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1
AT guccionejj braidedmoduleandcomodulealgebrasgaloisextensionsandelementsoftrace1
_version_ 1769810315258626048