Codimension theorems for complete toric varieties
Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Socie...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Artículo publishedVersion |
| Lenguaje: | Inglés |
| Publicado: |
2005
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox |
| Aporte de: |
| id |
paperaa:paper_00029939_v133_n11_p3153_Cox |
|---|---|
| record_format |
dspace |
| spelling |
paperaa:paper_00029939_v133_n11_p3153_Cox2023-06-12T16:39:42Z Codimension theorems for complete toric varieties Proc. Am. Math. Soc. 2005;133(11):3153-3162 Cox, D. Dickenstein, A. Toric variety Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society. Fil:Cox, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| language |
Inglés |
| orig_language_str_mv |
eng |
| topic |
Toric variety |
| spellingShingle |
Toric variety Cox, D. Dickenstein, A. Codimension theorems for complete toric varieties |
| topic_facet |
Toric variety |
| description |
Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that do not vanish simultaneously on X. ©2005 American Mathematical Society. |
| format |
Artículo Artículo publishedVersion |
| author |
Cox, D. Dickenstein, A. |
| author_facet |
Cox, D. Dickenstein, A. |
| author_sort |
Cox, D. |
| title |
Codimension theorems for complete toric varieties |
| title_short |
Codimension theorems for complete toric varieties |
| title_full |
Codimension theorems for complete toric varieties |
| title_fullStr |
Codimension theorems for complete toric varieties |
| title_full_unstemmed |
Codimension theorems for complete toric varieties |
| title_sort |
codimension theorems for complete toric varieties |
| publishDate |
2005 |
| url |
http://hdl.handle.net/20.500.12110/paper_00029939_v133_n11_p3153_Cox |
| work_keys_str_mv |
AT coxd codimensiontheoremsforcompletetoricvarieties AT dickensteina codimensiontheoremsforcompletetoricvarieties |
| _version_ |
1769810201866665984 |