G-structure on the cohomology of Hopf algebras
We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of...
Autores principales: | , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati |
Aporte de: |
id |
paperaa:paper_00029939_v132_n10_p2859_Farinati |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_00029939_v132_n10_p2859_Farinati2023-06-12T16:39:40Z G-structure on the cohomology of Hopf algebras Proc. Am. Math. Soc. 2004;132(10):2859-2865 Farinati, M.A. Solotar, A.L. Gerstenhaber algebras Hochschild cohomology Hopf algebras We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A). Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2004 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
topic |
Gerstenhaber algebras Hochschild cohomology Hopf algebras |
spellingShingle |
Gerstenhaber algebras Hochschild cohomology Hopf algebras Farinati, M.A. Solotar, A.L. G-structure on the cohomology of Hopf algebras |
topic_facet |
Gerstenhaber algebras Hochschild cohomology Hopf algebras |
description |
We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A). |
format |
Artículo Artículo publishedVersion |
author |
Farinati, M.A. Solotar, A.L. |
author_facet |
Farinati, M.A. Solotar, A.L. |
author_sort |
Farinati, M.A. |
title |
G-structure on the cohomology of Hopf algebras |
title_short |
G-structure on the cohomology of Hopf algebras |
title_full |
G-structure on the cohomology of Hopf algebras |
title_fullStr |
G-structure on the cohomology of Hopf algebras |
title_full_unstemmed |
G-structure on the cohomology of Hopf algebras |
title_sort |
g-structure on the cohomology of hopf algebras |
publishDate |
2004 |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati |
work_keys_str_mv |
AT farinatima gstructureonthecohomologyofhopfalgebras AT solotaral gstructureonthecohomologyofhopfalgebras |
_version_ |
1769810056906276864 |