G-structure on the cohomology of Hopf algebras

We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of...

Descripción completa

Detalles Bibliográficos
Autores principales: Farinati, M.A., Solotar, A.L.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2004
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati
Aporte de:
id paperaa:paper_00029939_v132_n10_p2859_Farinati
record_format dspace
spelling paperaa:paper_00029939_v132_n10_p2859_Farinati2023-06-12T16:39:40Z G-structure on the cohomology of Hopf algebras Proc. Am. Math. Soc. 2004;132(10):2859-2865 Farinati, M.A. Solotar, A.L. Gerstenhaber algebras Hochschild cohomology Hopf algebras We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A). Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solotar, A.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2004 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
topic Gerstenhaber algebras
Hochschild cohomology
Hopf algebras
spellingShingle Gerstenhaber algebras
Hochschild cohomology
Hopf algebras
Farinati, M.A.
Solotar, A.L.
G-structure on the cohomology of Hopf algebras
topic_facet Gerstenhaber algebras
Hochschild cohomology
Hopf algebras
description We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber bracket on H•GS (H, H). This fact was conjectured by R. Taillefer. The method consists of identifying H •GS (H, H) ≅ Ext•A (k, k) as a Gerstenhaber subalgebra of H• (A, A) (the Hochschild cohomology of A).
format Artículo
Artículo
publishedVersion
author Farinati, M.A.
Solotar, A.L.
author_facet Farinati, M.A.
Solotar, A.L.
author_sort Farinati, M.A.
title G-structure on the cohomology of Hopf algebras
title_short G-structure on the cohomology of Hopf algebras
title_full G-structure on the cohomology of Hopf algebras
title_fullStr G-structure on the cohomology of Hopf algebras
title_full_unstemmed G-structure on the cohomology of Hopf algebras
title_sort g-structure on the cohomology of hopf algebras
publishDate 2004
url http://hdl.handle.net/20.500.12110/paper_00029939_v132_n10_p2859_Farinati
work_keys_str_mv AT farinatima gstructureonthecohomologyofhopfalgebras
AT solotaral gstructureonthecohomologyofhopfalgebras
_version_ 1769810056906276864