Classifying computer session data using self-organizing maps

We propose an advanced solution to track persistent computer intruders inside a UNIX-based system by clustering sessions into groups bearing similar characteristics according to expertise and type of work. Our semi-supervised method based on Self-Organizing Map (SOM) accomplishes classification of f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Segura, Enrique Carlos
Publicado: 2009
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97807695_v1_n_p48_Estrada
http://hdl.handle.net/20.500.12110/paper_97807695_v1_n_p48_Estrada
Aporte de:
id paper:paper_97807695_v1_n_p48_Estrada
record_format dspace
spelling paper:paper_97807695_v1_n_p48_Estrada2023-06-08T16:37:07Z Classifying computer session data using self-organizing maps Segura, Enrique Carlos Computer scientists Computer sessions Keystroke patterns Novice programmer Semi-supervised method Artificial intelligence Biometrics Conformal mapping Self organizing maps We propose an advanced solution to track persistent computer intruders inside a UNIX-based system by clustering sessions into groups bearing similar characteristics according to expertise and type of work. Our semi-supervised method based on Self-Organizing Map (SOM) accomplishes classification of four types of users: computer scientists, experience programmers, non-programmers, and novice programmers. Our evaluation on a range of biometrics shows that using working directories yields better accuracy (>98.5%) than using most popular parameters like command use or keystroke patterns. © 2009 IEEE. Fil:Segura, E.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97807695_v1_n_p48_Estrada http://hdl.handle.net/20.500.12110/paper_97807695_v1_n_p48_Estrada
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Computer scientists
Computer sessions
Keystroke patterns
Novice programmer
Semi-supervised method
Artificial intelligence
Biometrics
Conformal mapping
Self organizing maps
spellingShingle Computer scientists
Computer sessions
Keystroke patterns
Novice programmer
Semi-supervised method
Artificial intelligence
Biometrics
Conformal mapping
Self organizing maps
Segura, Enrique Carlos
Classifying computer session data using self-organizing maps
topic_facet Computer scientists
Computer sessions
Keystroke patterns
Novice programmer
Semi-supervised method
Artificial intelligence
Biometrics
Conformal mapping
Self organizing maps
description We propose an advanced solution to track persistent computer intruders inside a UNIX-based system by clustering sessions into groups bearing similar characteristics according to expertise and type of work. Our semi-supervised method based on Self-Organizing Map (SOM) accomplishes classification of four types of users: computer scientists, experience programmers, non-programmers, and novice programmers. Our evaluation on a range of biometrics shows that using working directories yields better accuracy (>98.5%) than using most popular parameters like command use or keystroke patterns. © 2009 IEEE.
author Segura, Enrique Carlos
author_facet Segura, Enrique Carlos
author_sort Segura, Enrique Carlos
title Classifying computer session data using self-organizing maps
title_short Classifying computer session data using self-organizing maps
title_full Classifying computer session data using self-organizing maps
title_fullStr Classifying computer session data using self-organizing maps
title_full_unstemmed Classifying computer session data using self-organizing maps
title_sort classifying computer session data using self-organizing maps
publishDate 2009
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97807695_v1_n_p48_Estrada
http://hdl.handle.net/20.500.12110/paper_97807695_v1_n_p48_Estrada
work_keys_str_mv AT seguraenriquecarlos classifyingcomputersessiondatausingselforganizingmaps
_version_ 1768544062665654272