Silica@proton-alginate microreactors: A versatile platform for cell encapsulation

As an alternative approach to the well known Ca(II)-alginate encapsulation process within silica hydrogels, proton-driven alginate gelation was investigated in order to establish its capacity as a culture carrier, both isolated and embedded in an inorganic matrix. Control over the velocity of the pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Spedalieri, Ana Cecilia, Perullini, Ana Mercedes
Publicado: 2015
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507518_v3_n16_p3189_Spedalieri
http://hdl.handle.net/20.500.12110/paper_20507518_v3_n16_p3189_Spedalieri
Aporte de:
id paper:paper_20507518_v3_n16_p3189_Spedalieri
record_format dspace
spelling paper:paper_20507518_v3_n16_p3189_Spedalieri2023-06-08T16:33:53Z Silica@proton-alginate microreactors: A versatile platform for cell encapsulation Spedalieri, Ana Cecilia Perullini, Ana Mercedes Algae Alginate Biochemistry Biosynthesis Encapsulation Gelation Gold Hydrogels Microorganisms Protons Silica Alginate encapsulation Au nanoparticle Cell encapsulations Complexing agents Encapsulation process Inorganic matrices Micro reactor Two-step process Sol-gel process As an alternative approach to the well known Ca(II)-alginate encapsulation process within silica hydrogels, proton-driven alginate gelation was investigated in order to establish its capacity as a culture carrier, both isolated and embedded in an inorganic matrix. Control over the velocity of the proton-gelation front allows the formation of a hydrogel shell while the core remains liquid, allowing bacteria and microalgae to survive the strongly acidic encapsulation process. Once inside the inorganic host, synthesized by a sol-gel process, the capsules spontaneously redissolve without the aid of external complexing agents. The entrapped cells survive the two-step process to a significant extent; culture's growth restores the initial cell count in less than two weeks. Biosynthesis of Au nanoparticles mediated by the entrapped microalgae illustrates the preservation of the biosynthetic abilities supported by this platform. © The Royal Society of Chemistry 2015. Fil:Spedalieri, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perullini, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507518_v3_n16_p3189_Spedalieri http://hdl.handle.net/20.500.12110/paper_20507518_v3_n16_p3189_Spedalieri
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Algae
Alginate
Biochemistry
Biosynthesis
Encapsulation
Gelation
Gold
Hydrogels
Microorganisms
Protons
Silica
Alginate encapsulation
Au nanoparticle
Cell encapsulations
Complexing agents
Encapsulation process
Inorganic matrices
Micro reactor
Two-step process
Sol-gel process
spellingShingle Algae
Alginate
Biochemistry
Biosynthesis
Encapsulation
Gelation
Gold
Hydrogels
Microorganisms
Protons
Silica
Alginate encapsulation
Au nanoparticle
Cell encapsulations
Complexing agents
Encapsulation process
Inorganic matrices
Micro reactor
Two-step process
Sol-gel process
Spedalieri, Ana Cecilia
Perullini, Ana Mercedes
Silica@proton-alginate microreactors: A versatile platform for cell encapsulation
topic_facet Algae
Alginate
Biochemistry
Biosynthesis
Encapsulation
Gelation
Gold
Hydrogels
Microorganisms
Protons
Silica
Alginate encapsulation
Au nanoparticle
Cell encapsulations
Complexing agents
Encapsulation process
Inorganic matrices
Micro reactor
Two-step process
Sol-gel process
description As an alternative approach to the well known Ca(II)-alginate encapsulation process within silica hydrogels, proton-driven alginate gelation was investigated in order to establish its capacity as a culture carrier, both isolated and embedded in an inorganic matrix. Control over the velocity of the proton-gelation front allows the formation of a hydrogel shell while the core remains liquid, allowing bacteria and microalgae to survive the strongly acidic encapsulation process. Once inside the inorganic host, synthesized by a sol-gel process, the capsules spontaneously redissolve without the aid of external complexing agents. The entrapped cells survive the two-step process to a significant extent; culture's growth restores the initial cell count in less than two weeks. Biosynthesis of Au nanoparticles mediated by the entrapped microalgae illustrates the preservation of the biosynthetic abilities supported by this platform. © The Royal Society of Chemistry 2015.
author Spedalieri, Ana Cecilia
Perullini, Ana Mercedes
author_facet Spedalieri, Ana Cecilia
Perullini, Ana Mercedes
author_sort Spedalieri, Ana Cecilia
title Silica@proton-alginate microreactors: A versatile platform for cell encapsulation
title_short Silica@proton-alginate microreactors: A versatile platform for cell encapsulation
title_full Silica@proton-alginate microreactors: A versatile platform for cell encapsulation
title_fullStr Silica@proton-alginate microreactors: A versatile platform for cell encapsulation
title_full_unstemmed Silica@proton-alginate microreactors: A versatile platform for cell encapsulation
title_sort silica@proton-alginate microreactors: a versatile platform for cell encapsulation
publishDate 2015
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20507518_v3_n16_p3189_Spedalieri
http://hdl.handle.net/20.500.12110/paper_20507518_v3_n16_p3189_Spedalieri
work_keys_str_mv AT spedalierianacecilia silicaprotonalginatemicroreactorsaversatileplatformforcellencapsulation
AT perullinianamercedes silicaprotonalginatemicroreactorsaversatileplatformforcellencapsulation
_version_ 1768546696692760576