H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway

Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Suarez, Sebastian, Bikiel, Damian Ezequiel, Martí, Marcelo Adrián, Doctorovich, Fabio Ariel
Publicado: 2014
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v5_n_p_Eberhardt
http://hdl.handle.net/20.500.12110/paper_20411723_v5_n_p_Eberhardt
Aporte de:
id paper:paper_20411723_v5_n_p_Eberhardt
record_format dspace
spelling paper:paper_20411723_v5_n_p_Eberhardt2023-06-08T16:33:06Z H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway Suarez, Sebastian Bikiel, Damian Ezequiel Martí, Marcelo Adrián Doctorovich, Fabio Ariel calcitonin gene related peptide hydrogen sulfide nitric oxide nitroxyl transient receptor potential channel A1 unclassified drug calcitonin gene related peptide hydrogen sulfide nitric oxide nitrogen oxide nitroxyl transient receptor potential channel Trpa1 protein, mouse amino terminal sequence animal cell article blood pressure blood vessel tone calcium transport cerebrospinal fluid controlled study disulfide bond electrophilicity female human immunoprecipitation immunoreactivity male mast cell degranulation matrix assisted laser desorption ionization time of flight mass spectrometry mean arterial pressure mouse nonhuman regulatory mechanism sensory nerve cell signal transduction spinal ganglion vasodilatation animal aorta brain stem drug effects genetics immunohistochemistry in vitro study knockout mouse mass spectrometry metabolism signal transduction trigeminus ganglion Animals Aorta Brain Stem Calcitonin Gene-Related Peptide Humans Hydrogen Sulfide Immunohistochemistry In Vitro Techniques Mice Mice, Knockout Nitric Oxide Nitrogen Oxides Signal Transduction Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Transient Receptor Potential Channels Trigeminal Ganglion Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H 2 S. We show that H 2 S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H 2 S-evoked vasodilatatory effects largely depend on NO production and activation of HNO-TRPA1-CGRP pathway. We propose that this neuroendocrine HNO-TRPA1-CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system. © 2014 Macmillan Publishers Limited. All rights reserved. Fil:Suárez, S.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bikiel, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Martí, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Doctorovich, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v5_n_p_Eberhardt http://hdl.handle.net/20.500.12110/paper_20411723_v5_n_p_Eberhardt
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic calcitonin gene related peptide
hydrogen sulfide
nitric oxide
nitroxyl
transient receptor potential channel A1
unclassified drug
calcitonin gene related peptide
hydrogen sulfide
nitric oxide
nitrogen oxide
nitroxyl
transient receptor potential channel
Trpa1 protein, mouse
amino terminal sequence
animal cell
article
blood pressure
blood vessel tone
calcium transport
cerebrospinal fluid
controlled study
disulfide bond
electrophilicity
female
human
immunoprecipitation
immunoreactivity
male
mast cell degranulation
matrix assisted laser desorption ionization time of flight mass spectrometry
mean arterial pressure
mouse
nonhuman
regulatory mechanism
sensory nerve cell
signal transduction
spinal ganglion
vasodilatation
animal
aorta
brain stem
drug effects
genetics
immunohistochemistry
in vitro study
knockout mouse
mass spectrometry
metabolism
signal transduction
trigeminus ganglion
Animals
Aorta
Brain Stem
Calcitonin Gene-Related Peptide
Humans
Hydrogen Sulfide
Immunohistochemistry
In Vitro Techniques
Mice
Mice, Knockout
Nitric Oxide
Nitrogen Oxides
Signal Transduction
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Transient Receptor Potential Channels
Trigeminal Ganglion
spellingShingle calcitonin gene related peptide
hydrogen sulfide
nitric oxide
nitroxyl
transient receptor potential channel A1
unclassified drug
calcitonin gene related peptide
hydrogen sulfide
nitric oxide
nitrogen oxide
nitroxyl
transient receptor potential channel
Trpa1 protein, mouse
amino terminal sequence
animal cell
article
blood pressure
blood vessel tone
calcium transport
cerebrospinal fluid
controlled study
disulfide bond
electrophilicity
female
human
immunoprecipitation
immunoreactivity
male
mast cell degranulation
matrix assisted laser desorption ionization time of flight mass spectrometry
mean arterial pressure
mouse
nonhuman
regulatory mechanism
sensory nerve cell
signal transduction
spinal ganglion
vasodilatation
animal
aorta
brain stem
drug effects
genetics
immunohistochemistry
in vitro study
knockout mouse
mass spectrometry
metabolism
signal transduction
trigeminus ganglion
Animals
Aorta
Brain Stem
Calcitonin Gene-Related Peptide
Humans
Hydrogen Sulfide
Immunohistochemistry
In Vitro Techniques
Mice
Mice, Knockout
Nitric Oxide
Nitrogen Oxides
Signal Transduction
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Transient Receptor Potential Channels
Trigeminal Ganglion
Suarez, Sebastian
Bikiel, Damian Ezequiel
Martí, Marcelo Adrián
Doctorovich, Fabio Ariel
H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway
topic_facet calcitonin gene related peptide
hydrogen sulfide
nitric oxide
nitroxyl
transient receptor potential channel A1
unclassified drug
calcitonin gene related peptide
hydrogen sulfide
nitric oxide
nitrogen oxide
nitroxyl
transient receptor potential channel
Trpa1 protein, mouse
amino terminal sequence
animal cell
article
blood pressure
blood vessel tone
calcium transport
cerebrospinal fluid
controlled study
disulfide bond
electrophilicity
female
human
immunoprecipitation
immunoreactivity
male
mast cell degranulation
matrix assisted laser desorption ionization time of flight mass spectrometry
mean arterial pressure
mouse
nonhuman
regulatory mechanism
sensory nerve cell
signal transduction
spinal ganglion
vasodilatation
animal
aorta
brain stem
drug effects
genetics
immunohistochemistry
in vitro study
knockout mouse
mass spectrometry
metabolism
signal transduction
trigeminus ganglion
Animals
Aorta
Brain Stem
Calcitonin Gene-Related Peptide
Humans
Hydrogen Sulfide
Immunohistochemistry
In Vitro Techniques
Mice
Mice, Knockout
Nitric Oxide
Nitrogen Oxides
Signal Transduction
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Transient Receptor Potential Channels
Trigeminal Ganglion
description Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H 2 S. We show that H 2 S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H 2 S-evoked vasodilatatory effects largely depend on NO production and activation of HNO-TRPA1-CGRP pathway. We propose that this neuroendocrine HNO-TRPA1-CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system. © 2014 Macmillan Publishers Limited. All rights reserved.
author Suarez, Sebastian
Bikiel, Damian Ezequiel
Martí, Marcelo Adrián
Doctorovich, Fabio Ariel
author_facet Suarez, Sebastian
Bikiel, Damian Ezequiel
Martí, Marcelo Adrián
Doctorovich, Fabio Ariel
author_sort Suarez, Sebastian
title H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway
title_short H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway
title_full H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway
title_fullStr H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway
title_full_unstemmed H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway
title_sort h2s and no cooperatively regulate vascular tone by activating a neuroendocrine hno-trpa1-cgrp signalling pathway
publishDate 2014
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20411723_v5_n_p_Eberhardt
http://hdl.handle.net/20.500.12110/paper_20411723_v5_n_p_Eberhardt
work_keys_str_mv AT suarezsebastian h2sandnocooperativelyregulatevasculartonebyactivatinganeuroendocrinehnotrpa1cgrpsignallingpathway
AT bikieldamianezequiel h2sandnocooperativelyregulatevasculartonebyactivatinganeuroendocrinehnotrpa1cgrpsignallingpathway
AT martimarceloadrian h2sandnocooperativelyregulatevasculartonebyactivatinganeuroendocrinehnotrpa1cgrpsignallingpathway
AT doctorovichfabioariel h2sandnocooperativelyregulatevasculartonebyactivatinganeuroendocrinehnotrpa1cgrpsignallingpathway
_version_ 1768542524532588544