Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines

We report on the surface and bulk chemistry of LixMn2O4 (0 ≤ x ≤ 1) spinel oxide electrode for the selective extraction of LiCl from natural salt lake brines using an electrochemical method based on LiMn2O4 (LMO) lithium intercalation electrode and polypyrrole (PPy) reversible chloride electrode. Bo...

Descripción completa

Detalles Bibliográficos
Autores principales: Rubi, Diego, Williams, Federico Jose, Calvo, Ernesto Julio
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v120_n29_p15875_Marchini
http://hdl.handle.net/20.500.12110/paper_19327447_v120_n29_p15875_Marchini
Aporte de:
id paper:paper_19327447_v120_n29_p15875_Marchini
record_format dspace
spelling paper:paper_19327447_v120_n29_p15875_Marchini2023-06-08T16:31:39Z Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines Rubi, Diego Williams, Federico Jose Calvo, Ernesto Julio Brines Chlorine compounds Chronoamperometry Composite films Crystal structure Cyclic voltammetry Electrodes Extraction Intercalation Ion exchange Ions Lakes Lithium Lithium alloys Manganese Photoelectron spectroscopy Polypyrroles Pulsed laser deposition Surface chemistry Concentration profiles ELectrochemical methods Electrode stability Galvanostatic Intermittent Titration Techniques Lithium Intercalation Lithium ion exchange Selective extraction Surface stoichiometry Electrochemical electrodes We report on the surface and bulk chemistry of LixMn2O4 (0 ≤ x ≤ 1) spinel oxide electrode for the selective extraction of LiCl from natural salt lake brines using an electrochemical method based on LiMn2O4 (LMO) lithium intercalation electrode and polypyrrole (PPy) reversible chloride electrode. Both the surface composition and insertion/release of Li ions into/from the crystal structure have been studied with pulsed laser deposited (PLD) thin LixMn2O4 films and composite LMO/carbon black electrodes. Cyclic voltammetry (CV), XPS/UPS, XRD, chrono-amperometry, and galvanostatic intermittent titration technique (GITT) experiments in model LiNO3 solutions and natural brines from Salar de Olaroz (Jujuy, Argentina) have been used. Repetitive CV and GITT experiments showed reversible extraction/intercalation of Li ions in LMO with high selectivity and electrode stability in natural brine, while PPy is reversible to chloride ions. Chronoamperometry for time-bound diffusion in small nanocrystals with interference of concentration profiles yielded DLi + ∼ 10-10 cm2·s-1. Photoelectron spectroscopy showed Mn/O surface stoichiometry close to 1:2 and initial 1:1 MnIV/MnIII ratio with MnIII depletion during oxidation at 1.1 V vs Ag/AgCl and recovery of surface MnIII after reduction at 0.4 V. Coadsorption of Na+ was detected which resulted in slower ion exchange of Li ions, but there was no evidence of Na+ intercalation in the Mn oxide electrode. © 2016 American Chemical Society. Fil:Rubi, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Williams, F.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Calvo, E.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v120_n29_p15875_Marchini http://hdl.handle.net/20.500.12110/paper_19327447_v120_n29_p15875_Marchini
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Brines
Chlorine compounds
Chronoamperometry
Composite films
Crystal structure
Cyclic voltammetry
Electrodes
Extraction
Intercalation
Ion exchange
Ions
Lakes
Lithium
Lithium alloys
Manganese
Photoelectron spectroscopy
Polypyrroles
Pulsed laser deposition
Surface chemistry
Concentration profiles
ELectrochemical methods
Electrode stability
Galvanostatic Intermittent Titration Techniques
Lithium Intercalation
Lithium ion exchange
Selective extraction
Surface stoichiometry
Electrochemical electrodes
spellingShingle Brines
Chlorine compounds
Chronoamperometry
Composite films
Crystal structure
Cyclic voltammetry
Electrodes
Extraction
Intercalation
Ion exchange
Ions
Lakes
Lithium
Lithium alloys
Manganese
Photoelectron spectroscopy
Polypyrroles
Pulsed laser deposition
Surface chemistry
Concentration profiles
ELectrochemical methods
Electrode stability
Galvanostatic Intermittent Titration Techniques
Lithium Intercalation
Lithium ion exchange
Selective extraction
Surface stoichiometry
Electrochemical electrodes
Rubi, Diego
Williams, Federico Jose
Calvo, Ernesto Julio
Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines
topic_facet Brines
Chlorine compounds
Chronoamperometry
Composite films
Crystal structure
Cyclic voltammetry
Electrodes
Extraction
Intercalation
Ion exchange
Ions
Lakes
Lithium
Lithium alloys
Manganese
Photoelectron spectroscopy
Polypyrroles
Pulsed laser deposition
Surface chemistry
Concentration profiles
ELectrochemical methods
Electrode stability
Galvanostatic Intermittent Titration Techniques
Lithium Intercalation
Lithium ion exchange
Selective extraction
Surface stoichiometry
Electrochemical electrodes
description We report on the surface and bulk chemistry of LixMn2O4 (0 ≤ x ≤ 1) spinel oxide electrode for the selective extraction of LiCl from natural salt lake brines using an electrochemical method based on LiMn2O4 (LMO) lithium intercalation electrode and polypyrrole (PPy) reversible chloride electrode. Both the surface composition and insertion/release of Li ions into/from the crystal structure have been studied with pulsed laser deposited (PLD) thin LixMn2O4 films and composite LMO/carbon black electrodes. Cyclic voltammetry (CV), XPS/UPS, XRD, chrono-amperometry, and galvanostatic intermittent titration technique (GITT) experiments in model LiNO3 solutions and natural brines from Salar de Olaroz (Jujuy, Argentina) have been used. Repetitive CV and GITT experiments showed reversible extraction/intercalation of Li ions in LMO with high selectivity and electrode stability in natural brine, while PPy is reversible to chloride ions. Chronoamperometry for time-bound diffusion in small nanocrystals with interference of concentration profiles yielded DLi + ∼ 10-10 cm2·s-1. Photoelectron spectroscopy showed Mn/O surface stoichiometry close to 1:2 and initial 1:1 MnIV/MnIII ratio with MnIII depletion during oxidation at 1.1 V vs Ag/AgCl and recovery of surface MnIII after reduction at 0.4 V. Coadsorption of Na+ was detected which resulted in slower ion exchange of Li ions, but there was no evidence of Na+ intercalation in the Mn oxide electrode. © 2016 American Chemical Society.
author Rubi, Diego
Williams, Federico Jose
Calvo, Ernesto Julio
author_facet Rubi, Diego
Williams, Federico Jose
Calvo, Ernesto Julio
author_sort Rubi, Diego
title Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines
title_short Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines
title_full Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines
title_fullStr Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines
title_full_unstemmed Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines
title_sort surface chemistry and lithium-ion exchange in limn2o4 for the electrochemical selective extraction of licl from natural salt lake brines
publishDate 2016
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v120_n29_p15875_Marchini
http://hdl.handle.net/20.500.12110/paper_19327447_v120_n29_p15875_Marchini
work_keys_str_mv AT rubidiego surfacechemistryandlithiumionexchangeinlimn2o4fortheelectrochemicalselectiveextractionofliclfromnaturalsaltlakebrines
AT williamsfedericojose surfacechemistryandlithiumionexchangeinlimn2o4fortheelectrochemicalselectiveextractionofliclfromnaturalsaltlakebrines
AT calvoernestojulio surfacechemistryandlithiumionexchangeinlimn2o4fortheelectrochemicalselectiveextractionofliclfromnaturalsaltlakebrines
_version_ 1768542572716752896