Large solutions for the infinity Laplacian
In this paper, we study existence, uniqueness and asymptotic behavior near the boundary of solutions to Δ∞u = (D2u(x) Du(x)/|Du(x)|).Du(x)/|Du(x)| = uq in Ω with an explosive boundary condition u(x) → + ∞ as x →∂Ω. We find that there exists a solution if and only if q > 1. Moreover, when the...
Autor principal: | |
---|---|
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18648258_v1_n3_p271_Juutinen http://hdl.handle.net/20.500.12110/paper_18648258_v1_n3_p271_Juutinen |
Aporte de: |
id |
paper:paper_18648258_v1_n3_p271_Juutinen |
---|---|
record_format |
dspace |
spelling |
paper:paper_18648258_v1_n3_p271_Juutinen2023-06-08T16:29:37Z Large solutions for the infinity Laplacian Rossi, Julio Daniel Infinity Laplacian Large solutions In this paper, we study existence, uniqueness and asymptotic behavior near the boundary of solutions to Δ∞u = (D2u(x) Du(x)/|Du(x)|).Du(x)/|Du(x)| = uq in Ω with an explosive boundary condition u(x) → + ∞ as x →∂Ω. We find that there exists a solution if and only if q > 1. Moreover, when the domain Ω is sufficiently regular, such a solution is unique and verifies u(x) ∼(2(q + 1)/(q - 1)2)1/q-1 dist(x, ∂Ω) -2/q-1 © de Gruyter 2008. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2008 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18648258_v1_n3_p271_Juutinen http://hdl.handle.net/20.500.12110/paper_18648258_v1_n3_p271_Juutinen |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Infinity Laplacian Large solutions |
spellingShingle |
Infinity Laplacian Large solutions Rossi, Julio Daniel Large solutions for the infinity Laplacian |
topic_facet |
Infinity Laplacian Large solutions |
description |
In this paper, we study existence, uniqueness and asymptotic behavior near the boundary of solutions to Δ∞u = (D2u(x) Du(x)/|Du(x)|).Du(x)/|Du(x)| = uq in Ω with an explosive boundary condition u(x) → + ∞ as x →∂Ω. We find that there exists a solution if and only if q > 1. Moreover, when the domain Ω is sufficiently regular, such a solution is unique and verifies u(x) ∼(2(q + 1)/(q - 1)2)1/q-1 dist(x, ∂Ω) -2/q-1 © de Gruyter 2008. |
author |
Rossi, Julio Daniel |
author_facet |
Rossi, Julio Daniel |
author_sort |
Rossi, Julio Daniel |
title |
Large solutions for the infinity Laplacian |
title_short |
Large solutions for the infinity Laplacian |
title_full |
Large solutions for the infinity Laplacian |
title_fullStr |
Large solutions for the infinity Laplacian |
title_full_unstemmed |
Large solutions for the infinity Laplacian |
title_sort |
large solutions for the infinity laplacian |
publishDate |
2008 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_18648258_v1_n3_p271_Juutinen http://hdl.handle.net/20.500.12110/paper_18648258_v1_n3_p271_Juutinen |
work_keys_str_mv |
AT rossijuliodaniel largesolutionsfortheinfinitylaplacian |
_version_ |
1768544750760099840 |