Divergence operator and Poincaré inequalities on arbitrary bounded domainsy

Let Ω be an arbitrary bounded domain of ℝn. We study the right invertibility of the divergence on Ω in weighted Lebesgue and Sobolev spaces on Ω, and rely this invertibility to a geometric characterization of Ω and to weighted Poincaré inequalities on Ω. We recover, in particular, well-known results...

Descripción completa

Detalles Bibliográficos
Publicado: 2010
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17476933_v55_n8_p795_Durana
http://hdl.handle.net/20.500.12110/paper_17476933_v55_n8_p795_Durana
Aporte de:
id paper:paper_17476933_v55_n8_p795_Durana
record_format dspace
spelling paper:paper_17476933_v55_n8_p795_Durana2023-06-08T16:28:28Z Divergence operator and Poincaré inequalities on arbitrary bounded domainsy Divergence Geodesic distance Inequalities Poincaré Let Ω be an arbitrary bounded domain of ℝn. We study the right invertibility of the divergence on Ω in weighted Lebesgue and Sobolev spaces on Ω, and rely this invertibility to a geometric characterization of Ω and to weighted Poincaré inequalities on Ω. We recover, in particular, well-known results on the right invertibility of the divergence in Sobolev spaces when Ω is Lipschitz or, more generally, when Ω is a John domain, and focus on the case of s-John domains. © 2010 Taylor & Francis. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17476933_v55_n8_p795_Durana http://hdl.handle.net/20.500.12110/paper_17476933_v55_n8_p795_Durana
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Divergence
Geodesic distance
Inequalities
Poincaré
spellingShingle Divergence
Geodesic distance
Inequalities
Poincaré
Divergence operator and Poincaré inequalities on arbitrary bounded domainsy
topic_facet Divergence
Geodesic distance
Inequalities
Poincaré
description Let Ω be an arbitrary bounded domain of ℝn. We study the right invertibility of the divergence on Ω in weighted Lebesgue and Sobolev spaces on Ω, and rely this invertibility to a geometric characterization of Ω and to weighted Poincaré inequalities on Ω. We recover, in particular, well-known results on the right invertibility of the divergence in Sobolev spaces when Ω is Lipschitz or, more generally, when Ω is a John domain, and focus on the case of s-John domains. © 2010 Taylor & Francis.
title Divergence operator and Poincaré inequalities on arbitrary bounded domainsy
title_short Divergence operator and Poincaré inequalities on arbitrary bounded domainsy
title_full Divergence operator and Poincaré inequalities on arbitrary bounded domainsy
title_fullStr Divergence operator and Poincaré inequalities on arbitrary bounded domainsy
title_full_unstemmed Divergence operator and Poincaré inequalities on arbitrary bounded domainsy
title_sort divergence operator and poincaré inequalities on arbitrary bounded domainsy
publishDate 2010
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17476933_v55_n8_p795_Durana
http://hdl.handle.net/20.500.12110/paper_17476933_v55_n8_p795_Durana
_version_ 1768542959104425984