Superfluid Thomas - Fermi approximation for trapped fermi gases
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous syste...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17426588_v150_n3_p_Hernndez http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
Aporte de: |
id |
paper:paper_17426588_v150_n3_p_Hernndez |
---|---|
record_format |
dspace |
spelling |
paper:paper_17426588_v150_n3_p_Hernndez2023-06-08T16:27:10Z Superfluid Thomas - Fermi approximation for trapped fermi gases Capuzzi, Pablo Szybisz, Leszek Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Szybisz, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17426588_v150_n3_p_Hernndez http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation |
spellingShingle |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation Capuzzi, Pablo Szybisz, Leszek Superfluid Thomas - Fermi approximation for trapped fermi gases |
topic_facet |
Electron gas Equations of motion Fermions Contact interaction Inhomogeneous system Mean field approximation Particle currents Particle densities Scattering length Thomas-Fermi approximation Trapped fermi gas Local density approximation |
description |
We present a generalization of fermionic fluiddynamics to the case of two trapped fermion species with a contact interaction. Within a mean field approximation, we derive coupled equations of motion for the particle densities, particle currents, and anomalous pair density. For an inhomogeneous system, the equilibrium situation with vanishing currents is described by a generalized Thomas-Fermi relation that includes the superfluid gap, together with a new nonlocal gap equation that replaces the usual BCS one. These equations are numericaly solved resorting to a local density approximation (LDA). Density and gap profiles are analyzed in terms of the scattering length, revealing that the current frame can exhibit microscopic details of quantum origin that are frequently absent in more macroscopic scenarios. © 2009 IOP Publishing Ltd. |
author |
Capuzzi, Pablo Szybisz, Leszek |
author_facet |
Capuzzi, Pablo Szybisz, Leszek |
author_sort |
Capuzzi, Pablo |
title |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_short |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_full |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_fullStr |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_full_unstemmed |
Superfluid Thomas - Fermi approximation for trapped fermi gases |
title_sort |
superfluid thomas - fermi approximation for trapped fermi gases |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_17426588_v150_n3_p_Hernndez http://hdl.handle.net/20.500.12110/paper_17426588_v150_n3_p_Hernndez |
work_keys_str_mv |
AT capuzzipablo superfluidthomasfermiapproximationfortrappedfermigases AT szybiszleszek superfluidthomasfermiapproximationfortrappedfermigases |
_version_ |
1768542958494154752 |