Upper bounds for the decay rate in a nonlocal p-Laplacian evolution problem
We obtain upper bounds for the decay rate for solutions to the nonlocal problem λtu(x, t) = ∫ℝn J(x, y)|u(y, t) - u(x, t)|p-2(u(y, t) - u(x, t)) dy with an initial condition u0 ε L1(ℝn) ∩ L(Rn) and a fixed p > 2. We assume that the kernel J is symmetric, bounded (and therefore there is no reg...
Guardado en:
Autor principal: | Rossi, Julio Daniel |
---|---|
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16872762_v2014_n_p_Esteve http://hdl.handle.net/20.500.12110/paper_16872762_v2014_n_p_Esteve |
Aporte de: |
Ejemplares similares
-
Upper bounds for the decay rate in a nonlocal p-Laplacian evolution problem
por: Esteve, C., et al. -
Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions
por: Rossi, Julio Daniel
Publicado: (2015) -
Decay estimates for a nonlocal p-Laplacian evolution problem with mixed boundary conditions
por: Ferreira, R., et al. -
Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space
por: Rossi, Julio Daniel
Publicado: (2012) -
Decay bounds for nonlocal evolution equations in Orlicz spaces
por: Kaufmann, Uriel, et al.
Publicado: (2023)