The first eigenvalue of the p- Laplacian on quantum graphs
We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of...
Guardado en:
Autores principales: | , |
---|---|
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16642368_v6_n4_p365_DelPezzo http://hdl.handle.net/20.500.12110/paper_16642368_v6_n4_p365_DelPezzo |
Aporte de: |
id |
paper:paper_16642368_v6_n4_p365_DelPezzo |
---|---|
record_format |
dspace |
spelling |
paper:paper_16642368_v6_n4_p365_DelPezzo2023-06-08T16:26:01Z The first eigenvalue of the p- Laplacian on quantum graphs Del Pezzo, Leandro M. Rossi, Julio Daniel Eigenvalues p- Laplacian Quantum graphs Shape derivative We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1. © 2016, Springer International Publishing. Fil:Del Pezzo, L.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16642368_v6_n4_p365_DelPezzo http://hdl.handle.net/20.500.12110/paper_16642368_v6_n4_p365_DelPezzo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalues p- Laplacian Quantum graphs Shape derivative |
spellingShingle |
Eigenvalues p- Laplacian Quantum graphs Shape derivative Del Pezzo, Leandro M. Rossi, Julio Daniel The first eigenvalue of the p- Laplacian on quantum graphs |
topic_facet |
Eigenvalues p- Laplacian Quantum graphs Shape derivative |
description |
We study the first eigenvalue of the p- Laplacian (with 1 < p< ∞) on a quantum graph with Dirichlet or Kirchoff boundary conditions on the nodes. We find lower and upper bounds for this eigenvalue when we prescribe the total sum of the lengths of the edges and the number of Dirichlet nodes of the graph. Also we find a formula for the shape derivative of the first eigenvalue (assuming that it is simple) when we perturb the graph by changing the length of an edge. Finally, we study in detail the limit cases p→ ∞ and p→ 1. © 2016, Springer International Publishing. |
author |
Del Pezzo, Leandro M. Rossi, Julio Daniel |
author_facet |
Del Pezzo, Leandro M. Rossi, Julio Daniel |
author_sort |
Del Pezzo, Leandro M. |
title |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_short |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_full |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_fullStr |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_full_unstemmed |
The first eigenvalue of the p- Laplacian on quantum graphs |
title_sort |
first eigenvalue of the p- laplacian on quantum graphs |
publishDate |
2016 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16642368_v6_n4_p365_DelPezzo http://hdl.handle.net/20.500.12110/paper_16642368_v6_n4_p365_DelPezzo |
work_keys_str_mv |
AT delpezzoleandrom thefirsteigenvalueoftheplaplacianonquantumgraphs AT rossijuliodaniel thefirsteigenvalueoftheplaplacianonquantumgraphs AT delpezzoleandrom firsteigenvalueoftheplaplacianonquantumgraphs AT rossijuliodaniel firsteigenvalueoftheplaplacianonquantumgraphs |
_version_ |
1768544795119058944 |