Probe interval and probe unit interval graphs on superclasses of cographs
Probe (unit) interval graphs form a superclass of (unit) interval graphs. A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (un...
Guardado en:
Autores principales: | , , |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15710653_v37_nC_p339_Duran http://hdl.handle.net/20.500.12110/paper_15710653_v37_nC_p339_Duran |
Aporte de: |
id |
paper:paper_15710653_v37_nC_p339_Duran |
---|---|
record_format |
dspace |
spelling |
paper:paper_15710653_v37_nC_p339_Duran2025-07-30T19:00:06Z Probe interval and probe unit interval graphs on superclasses of cographs Durán, Guillermo A. Grippo, Luciano Norberto Safe, Martín Darío Forbidden induced subgraphs P4-tidy graphs Probe interval graphs Probe unit interval graphs Tree-cographs Probe (unit) interval graphs form a superclass of (unit) interval graphs. A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe interval graphs were introduced by Zhang for an application concerning with the physical mapping of DNA in the human genome project. In this work, we present characterizations by minimal forbidden induced subgraphs of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. © 2011 Elsevier B.V. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Grippo, L.N. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Safe, M.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15710653_v37_nC_p339_Duran http://hdl.handle.net/20.500.12110/paper_15710653_v37_nC_p339_Duran |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Forbidden induced subgraphs P4-tidy graphs Probe interval graphs Probe unit interval graphs Tree-cographs |
spellingShingle |
Forbidden induced subgraphs P4-tidy graphs Probe interval graphs Probe unit interval graphs Tree-cographs Durán, Guillermo A. Grippo, Luciano Norberto Safe, Martín Darío Probe interval and probe unit interval graphs on superclasses of cographs |
topic_facet |
Forbidden induced subgraphs P4-tidy graphs Probe interval graphs Probe unit interval graphs Tree-cographs |
description |
Probe (unit) interval graphs form a superclass of (unit) interval graphs. A graph is probe (unit) interval if its vertices can be partitioned into two sets: a set of probe vertices and a set of nonprobe vertices, so that the set of nonprobe vertices is a stable set and it is possible to obtain a (unit) interval graph by adding edges with both endpoints in the set of nonprobe vertices. Probe interval graphs were introduced by Zhang for an application concerning with the physical mapping of DNA in the human genome project. In this work, we present characterizations by minimal forbidden induced subgraphs of probe interval and probe unit interval graphs within two superclasses of cographs: P4-tidy graphs and tree-cographs. © 2011 Elsevier B.V. |
author |
Durán, Guillermo A. Grippo, Luciano Norberto Safe, Martín Darío |
author_facet |
Durán, Guillermo A. Grippo, Luciano Norberto Safe, Martín Darío |
author_sort |
Durán, Guillermo A. |
title |
Probe interval and probe unit interval graphs on superclasses of cographs |
title_short |
Probe interval and probe unit interval graphs on superclasses of cographs |
title_full |
Probe interval and probe unit interval graphs on superclasses of cographs |
title_fullStr |
Probe interval and probe unit interval graphs on superclasses of cographs |
title_full_unstemmed |
Probe interval and probe unit interval graphs on superclasses of cographs |
title_sort |
probe interval and probe unit interval graphs on superclasses of cographs |
publishDate |
2011 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15710653_v37_nC_p339_Duran http://hdl.handle.net/20.500.12110/paper_15710653_v37_nC_p339_Duran |
work_keys_str_mv |
AT duranguillermoa probeintervalandprobeunitintervalgraphsonsuperclassesofcographs AT grippolucianonorberto probeintervalandprobeunitintervalgraphsonsuperclassesofcographs AT safemartindario probeintervalandprobeunitintervalgraphsonsuperclassesofcographs |
_version_ |
1840323172699734016 |