Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit

We study the resistive switching (RS) mechanism as a way to obtain multilevel cell (MLC) memory devices. In an MLC, more than 1 b of information can be stored in each cell. Here, we identify one of the main conceptual difficulties that prevented the implementation of RS-based MLCs. We present a meth...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Levy, Pablo Eduardo, Sánchez, María José, Rozenberg, Marcelo Javier
Publicado: 2014
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15497747_v61_n1_p21_Stoliar
http://hdl.handle.net/20.500.12110/paper_15497747_v61_n1_p21_Stoliar
Aporte de:
id paper:paper_15497747_v61_n1_p21_Stoliar
record_format dspace
spelling paper:paper_15497747_v61_n1_p21_Stoliar2025-07-30T18:57:00Z Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit Levy, Pablo Eduardo Sánchez, María José Rozenberg, Marcelo Javier Multilevel cell (MLC) nonvolatile memory resistive random access memory (ReRAM) resistive switching (RS) Metallic compounds Switching systems Transition metals Multi level cell (MLC) Multilevel cell (MLC) memory Multilevel resistive switching Non-volatile memory Nonvolatile memory devices Resistive Random Access Memory (ReRAM) Resistive switching Transition-metal oxides Nonvolatile storage We study the resistive switching (RS) mechanism as a way to obtain multilevel cell (MLC) memory devices. In an MLC, more than 1 b of information can be stored in each cell. Here, we identify one of the main conceptual difficulties that prevented the implementation of RS-based MLCs. We present a method to overcome these difficulties and to implement a 6-b MLC device with a manganite-based RS device. This is done by precisely setting the remnant resistance of the RS device to an arbitrary value. Our MLC system demonstrates that transition metal oxide nonvolatile memory devices may compete with currently available MLCs. © 2004-2012 IEEE. Fil:Levy, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sanchez, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2014 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15497747_v61_n1_p21_Stoliar http://hdl.handle.net/20.500.12110/paper_15497747_v61_n1_p21_Stoliar
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Multilevel cell (MLC)
nonvolatile memory
resistive random access memory (ReRAM)
resistive switching (RS)
Metallic compounds
Switching systems
Transition metals
Multi level cell (MLC)
Multilevel cell (MLC) memory
Multilevel resistive switching
Non-volatile memory
Nonvolatile memory devices
Resistive Random Access Memory (ReRAM)
Resistive switching
Transition-metal oxides
Nonvolatile storage
spellingShingle Multilevel cell (MLC)
nonvolatile memory
resistive random access memory (ReRAM)
resistive switching (RS)
Metallic compounds
Switching systems
Transition metals
Multi level cell (MLC)
Multilevel cell (MLC) memory
Multilevel resistive switching
Non-volatile memory
Nonvolatile memory devices
Resistive Random Access Memory (ReRAM)
Resistive switching
Transition-metal oxides
Nonvolatile storage
Levy, Pablo Eduardo
Sánchez, María José
Rozenberg, Marcelo Javier
Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit
topic_facet Multilevel cell (MLC)
nonvolatile memory
resistive random access memory (ReRAM)
resistive switching (RS)
Metallic compounds
Switching systems
Transition metals
Multi level cell (MLC)
Multilevel cell (MLC) memory
Multilevel resistive switching
Non-volatile memory
Nonvolatile memory devices
Resistive Random Access Memory (ReRAM)
Resistive switching
Transition-metal oxides
Nonvolatile storage
description We study the resistive switching (RS) mechanism as a way to obtain multilevel cell (MLC) memory devices. In an MLC, more than 1 b of information can be stored in each cell. Here, we identify one of the main conceptual difficulties that prevented the implementation of RS-based MLCs. We present a method to overcome these difficulties and to implement a 6-b MLC device with a manganite-based RS device. This is done by precisely setting the remnant resistance of the RS device to an arbitrary value. Our MLC system demonstrates that transition metal oxide nonvolatile memory devices may compete with currently available MLCs. © 2004-2012 IEEE.
author Levy, Pablo Eduardo
Sánchez, María José
Rozenberg, Marcelo Javier
author_facet Levy, Pablo Eduardo
Sánchez, María José
Rozenberg, Marcelo Javier
author_sort Levy, Pablo Eduardo
title Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit
title_short Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit
title_full Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit
title_fullStr Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit
title_full_unstemmed Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit
title_sort nonvolatile multilevel resistive switching memory cell: a transition metal oxide-based circuit
publishDate 2014
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15497747_v61_n1_p21_Stoliar
http://hdl.handle.net/20.500.12110/paper_15497747_v61_n1_p21_Stoliar
work_keys_str_mv AT levypabloeduardo nonvolatilemultilevelresistiveswitchingmemorycellatransitionmetaloxidebasedcircuit
AT sanchezmariajose nonvolatilemultilevelresistiveswitchingmemorycellatransitionmetaloxidebasedcircuit
AT rozenbergmarcelojavier nonvolatilemultilevelresistiveswitchingmemorycellatransitionmetaloxidebasedcircuit
_version_ 1840328085568749568