Radial solutions for hamiltonian elliptic systems with weights
We prove the existence of infinitely many radial solutions for elliptic systems in Rn with power weights. A key tool for the proof will be a weighted imbedding theorem for fractional-order Sobolev spaces, that could be of independent interest.
Autores principales: | , , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15361365_v9_n3_p579_DeNapoli http://hdl.handle.net/20.500.12110/paper_15361365_v9_n3_p579_DeNapoli |
Aporte de: |
id |
paper:paper_15361365_v9_n3_p579_DeNapoli |
---|---|
record_format |
dspace |
spelling |
paper:paper_15361365_v9_n3_p579_DeNapoli2023-06-08T16:20:12Z Radial solutions for hamiltonian elliptic systems with weights De Napoli, Pablo Luis Drelichman, Irene Duran, Ricardo Guillermo Elliptic system Fractional-order Sobolev spaces Variational problems Weighted imbedding We prove the existence of infinitely many radial solutions for elliptic systems in Rn with power weights. A key tool for the proof will be a weighted imbedding theorem for fractional-order Sobolev spaces, that could be of independent interest. Fil:De Napoli, P.L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15361365_v9_n3_p579_DeNapoli http://hdl.handle.net/20.500.12110/paper_15361365_v9_n3_p579_DeNapoli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Elliptic system Fractional-order Sobolev spaces Variational problems Weighted imbedding |
spellingShingle |
Elliptic system Fractional-order Sobolev spaces Variational problems Weighted imbedding De Napoli, Pablo Luis Drelichman, Irene Duran, Ricardo Guillermo Radial solutions for hamiltonian elliptic systems with weights |
topic_facet |
Elliptic system Fractional-order Sobolev spaces Variational problems Weighted imbedding |
description |
We prove the existence of infinitely many radial solutions for elliptic systems in Rn with power weights. A key tool for the proof will be a weighted imbedding theorem for fractional-order Sobolev spaces, that could be of independent interest. |
author |
De Napoli, Pablo Luis Drelichman, Irene Duran, Ricardo Guillermo |
author_facet |
De Napoli, Pablo Luis Drelichman, Irene Duran, Ricardo Guillermo |
author_sort |
De Napoli, Pablo Luis |
title |
Radial solutions for hamiltonian elliptic systems with weights |
title_short |
Radial solutions for hamiltonian elliptic systems with weights |
title_full |
Radial solutions for hamiltonian elliptic systems with weights |
title_fullStr |
Radial solutions for hamiltonian elliptic systems with weights |
title_full_unstemmed |
Radial solutions for hamiltonian elliptic systems with weights |
title_sort |
radial solutions for hamiltonian elliptic systems with weights |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15361365_v9_n3_p579_DeNapoli http://hdl.handle.net/20.500.12110/paper_15361365_v9_n3_p579_DeNapoli |
work_keys_str_mv |
AT denapolipabloluis radialsolutionsforhamiltonianellipticsystemswithweights AT drelichmanirene radialsolutionsforhamiltonianellipticsystemswithweights AT duranricardoguillermo radialsolutionsforhamiltonianellipticsystemswithweights |
_version_ |
1768542098904055808 |