An extension of a theorem of V. Šverák to variable exponent spaces
In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ω<inf>n</inf> ℝ2 such that Ω<inf>n</inf> → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of th...
Guardado en:
Publicado: |
2015
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n5_p1987_Baroncini http://hdl.handle.net/20.500.12110/paper_15340392_v14_n5_p1987_Baroncini |
Aporte de: |
id |
paper:paper_15340392_v14_n5_p1987_Baroncini |
---|---|
record_format |
dspace |
spelling |
paper:paper_15340392_v14_n5_p1987_Baroncini2023-06-08T16:20:00Z An extension of a theorem of V. Šverák to variable exponent spaces Nonstandard growth Sensitivity analysis Shape optimization In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ω<inf>n</inf> ℝ2 such that Ω<inf>n</inf> → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source f ∈ L2(ℝ2) converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n5_p1987_Baroncini http://hdl.handle.net/20.500.12110/paper_15340392_v14_n5_p1987_Baroncini |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Nonstandard growth Sensitivity analysis Shape optimization |
spellingShingle |
Nonstandard growth Sensitivity analysis Shape optimization An extension of a theorem of V. Šverák to variable exponent spaces |
topic_facet |
Nonstandard growth Sensitivity analysis Shape optimization |
description |
In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ω<inf>n</inf> ℝ2 such that Ω<inf>n</inf> → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source f ∈ L2(ℝ2) converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces. |
title |
An extension of a theorem of V. Šverák to variable exponent spaces |
title_short |
An extension of a theorem of V. Šverák to variable exponent spaces |
title_full |
An extension of a theorem of V. Šverák to variable exponent spaces |
title_fullStr |
An extension of a theorem of V. Šverák to variable exponent spaces |
title_full_unstemmed |
An extension of a theorem of V. Šverák to variable exponent spaces |
title_sort |
extension of a theorem of v. šverák to variable exponent spaces |
publishDate |
2015 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n5_p1987_Baroncini http://hdl.handle.net/20.500.12110/paper_15340392_v14_n5_p1987_Baroncini |
_version_ |
1768544929198374912 |