An extension of a theorem of V. Šverák to variable exponent spaces

In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ω<inf>n</inf> ℝ2 such that Ω<inf>n</inf> → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2015
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n5_p1987_Baroncini
http://hdl.handle.net/20.500.12110/paper_15340392_v14_n5_p1987_Baroncini
Aporte de:
id paper:paper_15340392_v14_n5_p1987_Baroncini
record_format dspace
spelling paper:paper_15340392_v14_n5_p1987_Baroncini2023-06-08T16:20:00Z An extension of a theorem of V. Šverák to variable exponent spaces Nonstandard growth Sensitivity analysis Shape optimization In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ω<inf>n</inf> ℝ2 such that Ω<inf>n</inf> → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source f ∈ L2(ℝ2) converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n5_p1987_Baroncini http://hdl.handle.net/20.500.12110/paper_15340392_v14_n5_p1987_Baroncini
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Nonstandard growth
Sensitivity analysis
Shape optimization
spellingShingle Nonstandard growth
Sensitivity analysis
Shape optimization
An extension of a theorem of V. Šverák to variable exponent spaces
topic_facet Nonstandard growth
Sensitivity analysis
Shape optimization
description In 1993, V. Šverák proved that if a sequence of uniformly bounded domains Ω<inf>n</inf> ℝ2 such that Ω<inf>n</inf> → Ω in the sense of the Hausdorff complementary topology, verify that the number of connected components of its complements are bounded, then the solutions of the Dirichlet problem for the Laplacian with source f ∈ L2(ℝ2) converges to the solution of the limit domain with same source. In this paper, we extend Šverák result to variable exponent spaces.
title An extension of a theorem of V. Šverák to variable exponent spaces
title_short An extension of a theorem of V. Šverák to variable exponent spaces
title_full An extension of a theorem of V. Šverák to variable exponent spaces
title_fullStr An extension of a theorem of V. Šverák to variable exponent spaces
title_full_unstemmed An extension of a theorem of V. Šverák to variable exponent spaces
title_sort extension of a theorem of v. šverák to variable exponent spaces
publishDate 2015
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15340392_v14_n5_p1987_Baroncini
http://hdl.handle.net/20.500.12110/paper_15340392_v14_n5_p1987_Baroncini
_version_ 1768544929198374912