Tailored Hypersound Generation in Single Plasmonic Nanoantennas
Ultrashort laser pulses impinging on a plasmonic nanostructure trigger a highly dynamic scenario in the interplay of electronic relaxation with lattice vibrations, which can be experimentally probed via the generation of coherent phonons. In this Letter, we present studies of hypersound generation i...
Autor principal: | |
---|---|
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v16_n2_p1428_DellaPicca http://hdl.handle.net/20.500.12110/paper_15306984_v16_n2_p1428_DellaPicca |
Aporte de: |
id |
paper:paper_15306984_v16_n2_p1428_DellaPicca |
---|---|
record_format |
dspace |
spelling |
paper:paper_15306984_v16_n2_p1428_DellaPicca2023-06-08T16:19:48Z Tailored Hypersound Generation in Single Plasmonic Nanoantennas Bragas, Andrea Verónica Coherent acoustic phonon gold-silica nanoantenna hypersound nanoresonator pump-probe Gold Lattice vibrations Metamaterial antennas Phonons Plasmons Probes Silica Ultrashort pulses Vibrations (mechanical) Coherent acoustic phonons Electronic relaxation Hypersound Mechanical constraints Mechanical oscillations nanoresonator Plasmonic nanostructures Pump probe Nanoantennas Ultrashort laser pulses impinging on a plasmonic nanostructure trigger a highly dynamic scenario in the interplay of electronic relaxation with lattice vibrations, which can be experimentally probed via the generation of coherent phonons. In this Letter, we present studies of hypersound generation in the range of a few to tens of gigahertz on single gold plasmonic nanoantennas, which have additionally been subjected to predesigned mechanical constraints via silica bridges. Using these hybrid gold/silica nanoantennas, we demonstrate experimentally and via numerical simulations how mechanical constraints allow control over their vibrational mode spectrum. Degenerate pump-probe techniques with double modulation are performed in order to detect the small changes produced in the probe transmission by the mechanical oscillations of these single nanoantennas. © 2016 American Chemical Society. Fil:Bragas, A.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2016 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v16_n2_p1428_DellaPicca http://hdl.handle.net/20.500.12110/paper_15306984_v16_n2_p1428_DellaPicca |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Coherent acoustic phonon gold-silica nanoantenna hypersound nanoresonator pump-probe Gold Lattice vibrations Metamaterial antennas Phonons Plasmons Probes Silica Ultrashort pulses Vibrations (mechanical) Coherent acoustic phonons Electronic relaxation Hypersound Mechanical constraints Mechanical oscillations nanoresonator Plasmonic nanostructures Pump probe Nanoantennas |
spellingShingle |
Coherent acoustic phonon gold-silica nanoantenna hypersound nanoresonator pump-probe Gold Lattice vibrations Metamaterial antennas Phonons Plasmons Probes Silica Ultrashort pulses Vibrations (mechanical) Coherent acoustic phonons Electronic relaxation Hypersound Mechanical constraints Mechanical oscillations nanoresonator Plasmonic nanostructures Pump probe Nanoantennas Bragas, Andrea Verónica Tailored Hypersound Generation in Single Plasmonic Nanoantennas |
topic_facet |
Coherent acoustic phonon gold-silica nanoantenna hypersound nanoresonator pump-probe Gold Lattice vibrations Metamaterial antennas Phonons Plasmons Probes Silica Ultrashort pulses Vibrations (mechanical) Coherent acoustic phonons Electronic relaxation Hypersound Mechanical constraints Mechanical oscillations nanoresonator Plasmonic nanostructures Pump probe Nanoantennas |
description |
Ultrashort laser pulses impinging on a plasmonic nanostructure trigger a highly dynamic scenario in the interplay of electronic relaxation with lattice vibrations, which can be experimentally probed via the generation of coherent phonons. In this Letter, we present studies of hypersound generation in the range of a few to tens of gigahertz on single gold plasmonic nanoantennas, which have additionally been subjected to predesigned mechanical constraints via silica bridges. Using these hybrid gold/silica nanoantennas, we demonstrate experimentally and via numerical simulations how mechanical constraints allow control over their vibrational mode spectrum. Degenerate pump-probe techniques with double modulation are performed in order to detect the small changes produced in the probe transmission by the mechanical oscillations of these single nanoantennas. © 2016 American Chemical Society. |
author |
Bragas, Andrea Verónica |
author_facet |
Bragas, Andrea Verónica |
author_sort |
Bragas, Andrea Verónica |
title |
Tailored Hypersound Generation in Single Plasmonic Nanoantennas |
title_short |
Tailored Hypersound Generation in Single Plasmonic Nanoantennas |
title_full |
Tailored Hypersound Generation in Single Plasmonic Nanoantennas |
title_fullStr |
Tailored Hypersound Generation in Single Plasmonic Nanoantennas |
title_full_unstemmed |
Tailored Hypersound Generation in Single Plasmonic Nanoantennas |
title_sort |
tailored hypersound generation in single plasmonic nanoantennas |
publishDate |
2016 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v16_n2_p1428_DellaPicca http://hdl.handle.net/20.500.12110/paper_15306984_v16_n2_p1428_DellaPicca |
work_keys_str_mv |
AT bragasandreaveronica tailoredhypersoundgenerationinsingleplasmonicnanoantennas |
_version_ |
1768542904737857536 |