Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations

Resonant interaction of laser pulses with plasmons is used to identify vibrations associated with isolated spheres and pairs of contacting spheres in a system of gold nanoparticles. The optical pulses generate coherent mechanical oscillations of both monomers and dimers in the 5-150 GHz range, the a...

Descripción completa

Detalles Bibliográficos
Autor principal: Bragas, Andrea Verónica
Publicado: 2011
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v11_n9_p3685_Jais
http://hdl.handle.net/20.500.12110/paper_15306984_v11_n9_p3685_Jais
Aporte de:
id paper:paper_15306984_v11_n9_p3685_Jais
record_format dspace
spelling paper:paper_15306984_v11_n9_p3685_Jais2023-06-08T16:19:46Z Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations Bragas, Andrea Verónica acoustic vibrations Gold nanoparticles stimulated Brillouin scattering time-resolved spectroscopy Acoustic vibration Central wavelength Excitation process Gold nanoparticles Mechanical oscillations Metal nanoparticles Resonant interaction Stimulated Brillouin Strong enhancement Time-resolved spectroscopy Tunable laser pulse Dimers Laser pulses Laser spectroscopy Lasers Monomers Nanoparticles Plasmons Pulse generators gold metal metal nanoparticle nanoparticle polymer acoustics article chemistry dimerization mass spectrometry methodology nanotechnology oscillometry physics surface plasmon resonance vibration Acoustics Dimerization Gold Mass Spectrometry Metal Nanoparticles Metals Nanoparticles Nanotechnology Oscillometry Physics Polymers Surface Plasmon Resonance Vibration Resonant interaction of laser pulses with plasmons is used to identify vibrations associated with isolated spheres and pairs of contacting spheres in a system of gold nanoparticles. The optical pulses generate coherent mechanical oscillations of both monomers and dimers in the 5-150 GHz range, the amplitudes of which exhibit a strong enhancement when the laser central wavelength is tuned to resonate with the corresponding plasmon. Because of the resonant selection in the excitation process, the widths of the acoustic modes are significantly smaller than broadening caused by the spread in radii in the ensemble. © 2011 American Chemical Society. Fil:Bragas, A.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v11_n9_p3685_Jais http://hdl.handle.net/20.500.12110/paper_15306984_v11_n9_p3685_Jais
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic acoustic vibrations
Gold nanoparticles
stimulated Brillouin scattering
time-resolved spectroscopy
Acoustic vibration
Central wavelength
Excitation process
Gold nanoparticles
Mechanical oscillations
Metal nanoparticles
Resonant interaction
Stimulated Brillouin
Strong enhancement
Time-resolved spectroscopy
Tunable laser pulse
Dimers
Laser pulses
Laser spectroscopy
Lasers
Monomers
Nanoparticles
Plasmons
Pulse generators
gold
metal
metal nanoparticle
nanoparticle
polymer
acoustics
article
chemistry
dimerization
mass spectrometry
methodology
nanotechnology
oscillometry
physics
surface plasmon resonance
vibration
Acoustics
Dimerization
Gold
Mass Spectrometry
Metal Nanoparticles
Metals
Nanoparticles
Nanotechnology
Oscillometry
Physics
Polymers
Surface Plasmon Resonance
Vibration
spellingShingle acoustic vibrations
Gold nanoparticles
stimulated Brillouin scattering
time-resolved spectroscopy
Acoustic vibration
Central wavelength
Excitation process
Gold nanoparticles
Mechanical oscillations
Metal nanoparticles
Resonant interaction
Stimulated Brillouin
Strong enhancement
Time-resolved spectroscopy
Tunable laser pulse
Dimers
Laser pulses
Laser spectroscopy
Lasers
Monomers
Nanoparticles
Plasmons
Pulse generators
gold
metal
metal nanoparticle
nanoparticle
polymer
acoustics
article
chemistry
dimerization
mass spectrometry
methodology
nanotechnology
oscillometry
physics
surface plasmon resonance
vibration
Acoustics
Dimerization
Gold
Mass Spectrometry
Metal Nanoparticles
Metals
Nanoparticles
Nanotechnology
Oscillometry
Physics
Polymers
Surface Plasmon Resonance
Vibration
Bragas, Andrea Verónica
Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations
topic_facet acoustic vibrations
Gold nanoparticles
stimulated Brillouin scattering
time-resolved spectroscopy
Acoustic vibration
Central wavelength
Excitation process
Gold nanoparticles
Mechanical oscillations
Metal nanoparticles
Resonant interaction
Stimulated Brillouin
Strong enhancement
Time-resolved spectroscopy
Tunable laser pulse
Dimers
Laser pulses
Laser spectroscopy
Lasers
Monomers
Nanoparticles
Plasmons
Pulse generators
gold
metal
metal nanoparticle
nanoparticle
polymer
acoustics
article
chemistry
dimerization
mass spectrometry
methodology
nanotechnology
oscillometry
physics
surface plasmon resonance
vibration
Acoustics
Dimerization
Gold
Mass Spectrometry
Metal Nanoparticles
Metals
Nanoparticles
Nanotechnology
Oscillometry
Physics
Polymers
Surface Plasmon Resonance
Vibration
description Resonant interaction of laser pulses with plasmons is used to identify vibrations associated with isolated spheres and pairs of contacting spheres in a system of gold nanoparticles. The optical pulses generate coherent mechanical oscillations of both monomers and dimers in the 5-150 GHz range, the amplitudes of which exhibit a strong enhancement when the laser central wavelength is tuned to resonate with the corresponding plasmon. Because of the resonant selection in the excitation process, the widths of the acoustic modes are significantly smaller than broadening caused by the spread in radii in the ensemble. © 2011 American Chemical Society.
author Bragas, Andrea Verónica
author_facet Bragas, Andrea Verónica
author_sort Bragas, Andrea Verónica
title Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations
title_short Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations
title_full Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations
title_fullStr Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations
title_full_unstemmed Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations
title_sort metal nanoparticle ensembles: tunable laser pulses distinguish monomer from dimer vibrations
publishDate 2011
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15306984_v11_n9_p3685_Jais
http://hdl.handle.net/20.500.12110/paper_15306984_v11_n9_p3685_Jais
work_keys_str_mv AT bragasandreaveronica metalnanoparticleensemblestunablelaserpulsesdistinguishmonomerfromdimervibrations
_version_ 1768542284417073152