The intrinsic fundamental group of a linear category

We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Redondo, María Julia, Solotar, Andrea Leonor
Publicado: 2012
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1386923X_v15_n4_p735_Cibils
http://hdl.handle.net/20.500.12110/paper_1386923X_v15_n4_p735_Cibils
Aporte de:
Descripción
Sumario:We provide an intrinsic definition of the fundamental group of a linear category over a ring as the automorphism group of the fibre functor on Galois coverings. If the universal covering exists, we prove that this group is isomorphic to the Galois group of the universal covering. The grading deduced from a Galois covering enables us to describe the canonical monomorphism from its automorphism group to the first Hochschild-Mitchell cohomology vector space. © 2010 Springer Science+Business Media B.V.