Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials
The geometric representation at a fixed frequency of the wave vector (or dispersion) surface ω(k) for lossless, homogeneous, dielectric-magnetic uniaxial materials is explored for the case when the elements of the relative permittivity and permeability tensors of the material can have any sign. Elec...
Publicado: |
2006
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10847529_v23_n4_p949_Depine http://hdl.handle.net/20.500.12110/paper_10847529_v23_n4_p949_Depine |
Aporte de: |
id |
paper:paper_10847529_v23_n4_p949_Depine |
---|---|
record_format |
dspace |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Dielectric materials Magnetic materials Mechanical permeability Natural frequencies Permittivity Electromagnetic plane wave Uniaxial material Light propagation |
spellingShingle |
Dielectric materials Magnetic materials Mechanical permeability Natural frequencies Permittivity Electromagnetic plane wave Uniaxial material Light propagation Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials |
topic_facet |
Dielectric materials Magnetic materials Mechanical permeability Natural frequencies Permittivity Electromagnetic plane wave Uniaxial material Light propagation |
description |
The geometric representation at a fixed frequency of the wave vector (or dispersion) surface ω(k) for lossless, homogeneous, dielectric-magnetic uniaxial materials is explored for the case when the elements of the relative permittivity and permeability tensors of the material can have any sign. Electromagnetic plane waves propagating inside the material can exhibit dispersion surfaces in the form of ellipsoids of revolution, hyperboloids of one sheet, or hyperboloids of two sheets. Furthermore, depending on the relative orientation of the optic axis, the intersections of these surfaces with fixed planes of propagation can be circles, ellipses, hyperbolas, or straight lines. The understanding obtained is used to study the reflection and refraction of electromagnetic plane waves due to a planar interface with an isotropic medium. © 2006 Optical Society of America. |
title |
Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials |
title_short |
Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials |
title_full |
Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials |
title_fullStr |
Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials |
title_full_unstemmed |
Classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials |
title_sort |
classification of dispersion equations for homogeneous, dielectric-magnetic, uniaxial materials |
publishDate |
2006 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10847529_v23_n4_p949_Depine http://hdl.handle.net/20.500.12110/paper_10847529_v23_n4_p949_Depine |
bdutipo_str |
Repositorios |
_version_ |
1764820567897145344 |