The Korn inequality for Jones domains
In this paper we prove the Korn inequality, and its generalization to Lp, 1 < p < ∞, for bounded domains Ω ⊂ ℝn, n ≥ 2, satisfying an (ε, δ) condition.
Guardado en:
Publicado: |
2004
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2004_n_p1_Duran http://hdl.handle.net/20.500.12110/paper_10726691_v2004_n_p1_Duran |
Aporte de: |
id |
paper:paper_10726691_v2004_n_p1_Duran |
---|---|
record_format |
dspace |
spelling |
paper:paper_10726691_v2004_n_p1_Duran2023-06-08T16:04:51Z The Korn inequality for Jones domains Jones domains Korn inequality In this paper we prove the Korn inequality, and its generalization to Lp, 1 < p < ∞, for bounded domains Ω ⊂ ℝn, n ≥ 2, satisfying an (ε, δ) condition. 2004 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2004_n_p1_Duran http://hdl.handle.net/20.500.12110/paper_10726691_v2004_n_p1_Duran |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Jones domains Korn inequality |
spellingShingle |
Jones domains Korn inequality The Korn inequality for Jones domains |
topic_facet |
Jones domains Korn inequality |
description |
In this paper we prove the Korn inequality, and its generalization to Lp, 1 < p < ∞, for bounded domains Ω ⊂ ℝn, n ≥ 2, satisfying an (ε, δ) condition. |
title |
The Korn inequality for Jones domains |
title_short |
The Korn inequality for Jones domains |
title_full |
The Korn inequality for Jones domains |
title_fullStr |
The Korn inequality for Jones domains |
title_full_unstemmed |
The Korn inequality for Jones domains |
title_sort |
korn inequality for jones domains |
publishDate |
2004 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10726691_v2004_n_p1_Duran http://hdl.handle.net/20.500.12110/paper_10726691_v2004_n_p1_Duran |
_version_ |
1768543811780214784 |