Multilinear Marcinkiewicz-Zygmund Inequalities
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on ℓ r -valued extensions of linear operators. We show that for certain 1 ≤ p, q 1 , ⋯ , q m , r≤ ∞, there is a constant C≥ 0 such that for every bounded multilinear operator T:Lq1(μ1)×⋯×Lqm(μm)→Lp(ν) and functi...
Publicado: |
2019
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10695869_v25_n1_p51_Carando http://hdl.handle.net/20.500.12110/paper_10695869_v25_n1_p51_Carando |
Aporte de: |
id |
paper:paper_10695869_v25_n1_p51_Carando |
---|---|
record_format |
dspace |
spelling |
paper:paper_10695869_v25_n1_p51_Carando2023-06-08T16:04:24Z Multilinear Marcinkiewicz-Zygmund Inequalities Calderón-Zygmund operators Multilinear operators Vector-valued inequalities We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on ℓ r -valued extensions of linear operators. We show that for certain 1 ≤ p, q 1 , ⋯ , q m , r≤ ∞, there is a constant C≥ 0 such that for every bounded multilinear operator T:Lq1(μ1)×⋯×Lqm(μm)→Lp(ν) and functions {fk11}k1=1n1⊂Lq1(μ1),⋯,{fkmm}km=1nm⊂Lqm(μm), the following inequality holds ∥(∑k1,⋯,km|T(fk11,⋯,fkmm)|r)1/r∥Lp(ν)≤C‖T‖∏i=1m∥(∑ki=1ni|fkii|r)1/r∥Lqi(μi).In some cases we also calculate the best constant C≥ 0 satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators. © 2017, Springer Science+Business Media, LLC. 2019 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10695869_v25_n1_p51_Carando http://hdl.handle.net/20.500.12110/paper_10695869_v25_n1_p51_Carando |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Calderón-Zygmund operators Multilinear operators Vector-valued inequalities |
spellingShingle |
Calderón-Zygmund operators Multilinear operators Vector-valued inequalities Multilinear Marcinkiewicz-Zygmund Inequalities |
topic_facet |
Calderón-Zygmund operators Multilinear operators Vector-valued inequalities |
description |
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on ℓ r -valued extensions of linear operators. We show that for certain 1 ≤ p, q 1 , ⋯ , q m , r≤ ∞, there is a constant C≥ 0 such that for every bounded multilinear operator T:Lq1(μ1)×⋯×Lqm(μm)→Lp(ν) and functions {fk11}k1=1n1⊂Lq1(μ1),⋯,{fkmm}km=1nm⊂Lqm(μm), the following inequality holds ∥(∑k1,⋯,km|T(fk11,⋯,fkmm)|r)1/r∥Lp(ν)≤C‖T‖∏i=1m∥(∑ki=1ni|fkii|r)1/r∥Lqi(μi).In some cases we also calculate the best constant C≥ 0 satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderón-Zygmund operators. © 2017, Springer Science+Business Media, LLC. |
title |
Multilinear Marcinkiewicz-Zygmund Inequalities |
title_short |
Multilinear Marcinkiewicz-Zygmund Inequalities |
title_full |
Multilinear Marcinkiewicz-Zygmund Inequalities |
title_fullStr |
Multilinear Marcinkiewicz-Zygmund Inequalities |
title_full_unstemmed |
Multilinear Marcinkiewicz-Zygmund Inequalities |
title_sort |
multilinear marcinkiewicz-zygmund inequalities |
publishDate |
2019 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10695869_v25_n1_p51_Carando http://hdl.handle.net/20.500.12110/paper_10695869_v25_n1_p51_Carando |
_version_ |
1768544970623418368 |