Subspaces with extra invariance nearest to observed data

Given an arbitrary finite set of data F={f1,…,fm}⊂L2(Rd) we prove the existence and show how to construct a “small shift invariant space” that is “closest” to the data F over certain class of closed subspaces of L2(Rd). The approximating subspace is required to have extra-invariance properties, that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cabrelli, Carlos Alberto
Publicado: 2016
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10635203_v41_n2_p660_Cabrelli
http://hdl.handle.net/20.500.12110/paper_10635203_v41_n2_p660_Cabrelli
Aporte de:

Ejemplares similares