Convex polytopes and quantum separability

We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum state...

Descripción completa

Detalles Bibliográficos
Publicado: 2011
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v84_n6_p_Holik
http://hdl.handle.net/20.500.12110/paper_10502947_v84_n6_p_Holik
Aporte de:
id paper:paper_10502947_v84_n6_p_Holik
record_format dspace
spelling paper:paper_10502947_v84_n6_p_Holik2023-06-08T16:02:41Z Convex polytopes and quantum separability Convex polytopes Geometrical property Quantum separability Quantum state Mathematical models Physics Quantum entanglement We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property. © 2011 American Physical Society. 2011 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v84_n6_p_Holik http://hdl.handle.net/20.500.12110/paper_10502947_v84_n6_p_Holik
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Convex polytopes
Geometrical property
Quantum separability
Quantum state
Mathematical models
Physics
Quantum entanglement
spellingShingle Convex polytopes
Geometrical property
Quantum separability
Quantum state
Mathematical models
Physics
Quantum entanglement
Convex polytopes and quantum separability
topic_facet Convex polytopes
Geometrical property
Quantum separability
Quantum state
Mathematical models
Physics
Quantum entanglement
description We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property. © 2011 American Physical Society.
title Convex polytopes and quantum separability
title_short Convex polytopes and quantum separability
title_full Convex polytopes and quantum separability
title_fullStr Convex polytopes and quantum separability
title_full_unstemmed Convex polytopes and quantum separability
title_sort convex polytopes and quantum separability
publishDate 2011
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v84_n6_p_Holik
http://hdl.handle.net/20.500.12110/paper_10502947_v84_n6_p_Holik
_version_ 1768546219044372480