Simulating a quantum walk with classical optics
We present an optical module to simulate one step of a quantum walk algorithm. The quantum state of a system with a 2N -dimensional Hilbert space is encoded in the spatial distribution of the amplitude of the electromagnetic field in a plane. In such spatial encoding, the probability amplitude of ea...
Autores principales: | , , , |
---|---|
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v74_n5_p_Francisco http://hdl.handle.net/20.500.12110/paper_10502947_v74_n5_p_Francisco |
Aporte de: |
id |
paper:paper_10502947_v74_n5_p_Francisco |
---|---|
record_format |
dspace |
spelling |
paper:paper_10502947_v74_n5_p_Francisco2023-06-08T16:02:23Z Simulating a quantum walk with classical optics Francisco, Diego Hernán Iemmi, Claudio César Paz, Juan Pablo Ledesma, Silvia Adriana Algorithms Electromagnetic fields Optical devices Optics Probability Wavefronts N -dimensional quantum walker Quantum states Quantum walk algorithm Two-dimensional quantum coin Quantum theory We present an optical module to simulate one step of a quantum walk algorithm. The quantum state of a system with a 2N -dimensional Hilbert space is encoded in the spatial distribution of the amplitude of the electromagnetic field in a plane. In such spatial encoding, the probability amplitude of each state of a basis is associated with the complex electromagnetic amplitude in a given slice of the laser wave front. We discuss the design and operation of an optical module that is used to implement one step of a quantum walk algorithm. Using this module, composed by standard optical elements, the evolution of the quantum state corresponds to the application of a Hadamard gate on a single qubit (representing the two-dimensional quantum coin) followed by a displacement of the N -dimensional quantum walker conditioned on the state of the coin. We show the actual implementation of the method and discuss its characteristics and limitations. © 2006 The American Physical Society. Fil:Francisco, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Iemmi, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Ledesma, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v74_n5_p_Francisco http://hdl.handle.net/20.500.12110/paper_10502947_v74_n5_p_Francisco |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Algorithms Electromagnetic fields Optical devices Optics Probability Wavefronts N -dimensional quantum walker Quantum states Quantum walk algorithm Two-dimensional quantum coin Quantum theory |
spellingShingle |
Algorithms Electromagnetic fields Optical devices Optics Probability Wavefronts N -dimensional quantum walker Quantum states Quantum walk algorithm Two-dimensional quantum coin Quantum theory Francisco, Diego Hernán Iemmi, Claudio César Paz, Juan Pablo Ledesma, Silvia Adriana Simulating a quantum walk with classical optics |
topic_facet |
Algorithms Electromagnetic fields Optical devices Optics Probability Wavefronts N -dimensional quantum walker Quantum states Quantum walk algorithm Two-dimensional quantum coin Quantum theory |
description |
We present an optical module to simulate one step of a quantum walk algorithm. The quantum state of a system with a 2N -dimensional Hilbert space is encoded in the spatial distribution of the amplitude of the electromagnetic field in a plane. In such spatial encoding, the probability amplitude of each state of a basis is associated with the complex electromagnetic amplitude in a given slice of the laser wave front. We discuss the design and operation of an optical module that is used to implement one step of a quantum walk algorithm. Using this module, composed by standard optical elements, the evolution of the quantum state corresponds to the application of a Hadamard gate on a single qubit (representing the two-dimensional quantum coin) followed by a displacement of the N -dimensional quantum walker conditioned on the state of the coin. We show the actual implementation of the method and discuss its characteristics and limitations. © 2006 The American Physical Society. |
author |
Francisco, Diego Hernán Iemmi, Claudio César Paz, Juan Pablo Ledesma, Silvia Adriana |
author_facet |
Francisco, Diego Hernán Iemmi, Claudio César Paz, Juan Pablo Ledesma, Silvia Adriana |
author_sort |
Francisco, Diego Hernán |
title |
Simulating a quantum walk with classical optics |
title_short |
Simulating a quantum walk with classical optics |
title_full |
Simulating a quantum walk with classical optics |
title_fullStr |
Simulating a quantum walk with classical optics |
title_full_unstemmed |
Simulating a quantum walk with classical optics |
title_sort |
simulating a quantum walk with classical optics |
publishDate |
2006 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v74_n5_p_Francisco http://hdl.handle.net/20.500.12110/paper_10502947_v74_n5_p_Francisco |
work_keys_str_mv |
AT franciscodiegohernan simulatingaquantumwalkwithclassicaloptics AT iemmiclaudiocesar simulatingaquantumwalkwithclassicaloptics AT pazjuanpablo simulatingaquantumwalkwithclassicaloptics AT ledesmasilviaadriana simulatingaquantumwalkwithclassicaloptics |
_version_ |
1768546263677009920 |