Simulating a quantum walk with classical optics

We present an optical module to simulate one step of a quantum walk algorithm. The quantum state of a system with a 2N -dimensional Hilbert space is encoded in the spatial distribution of the amplitude of the electromagnetic field in a plane. In such spatial encoding, the probability amplitude of ea...

Descripción completa

Detalles Bibliográficos
Autores principales: Francisco, Diego Hernán, Iemmi, Claudio César, Paz, Juan Pablo, Ledesma, Silvia Adriana
Publicado: 2006
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v74_n5_p_Francisco
http://hdl.handle.net/20.500.12110/paper_10502947_v74_n5_p_Francisco
Aporte de:
id paper:paper_10502947_v74_n5_p_Francisco
record_format dspace
spelling paper:paper_10502947_v74_n5_p_Francisco2023-06-08T16:02:23Z Simulating a quantum walk with classical optics Francisco, Diego Hernán Iemmi, Claudio César Paz, Juan Pablo Ledesma, Silvia Adriana Algorithms Electromagnetic fields Optical devices Optics Probability Wavefronts N -dimensional quantum walker Quantum states Quantum walk algorithm Two-dimensional quantum coin Quantum theory We present an optical module to simulate one step of a quantum walk algorithm. The quantum state of a system with a 2N -dimensional Hilbert space is encoded in the spatial distribution of the amplitude of the electromagnetic field in a plane. In such spatial encoding, the probability amplitude of each state of a basis is associated with the complex electromagnetic amplitude in a given slice of the laser wave front. We discuss the design and operation of an optical module that is used to implement one step of a quantum walk algorithm. Using this module, composed by standard optical elements, the evolution of the quantum state corresponds to the application of a Hadamard gate on a single qubit (representing the two-dimensional quantum coin) followed by a displacement of the N -dimensional quantum walker conditioned on the state of the coin. We show the actual implementation of the method and discuss its characteristics and limitations. © 2006 The American Physical Society. Fil:Francisco, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Iemmi, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Ledesma, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v74_n5_p_Francisco http://hdl.handle.net/20.500.12110/paper_10502947_v74_n5_p_Francisco
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Algorithms
Electromagnetic fields
Optical devices
Optics
Probability
Wavefronts
N -dimensional quantum walker
Quantum states
Quantum walk algorithm
Two-dimensional quantum coin
Quantum theory
spellingShingle Algorithms
Electromagnetic fields
Optical devices
Optics
Probability
Wavefronts
N -dimensional quantum walker
Quantum states
Quantum walk algorithm
Two-dimensional quantum coin
Quantum theory
Francisco, Diego Hernán
Iemmi, Claudio César
Paz, Juan Pablo
Ledesma, Silvia Adriana
Simulating a quantum walk with classical optics
topic_facet Algorithms
Electromagnetic fields
Optical devices
Optics
Probability
Wavefronts
N -dimensional quantum walker
Quantum states
Quantum walk algorithm
Two-dimensional quantum coin
Quantum theory
description We present an optical module to simulate one step of a quantum walk algorithm. The quantum state of a system with a 2N -dimensional Hilbert space is encoded in the spatial distribution of the amplitude of the electromagnetic field in a plane. In such spatial encoding, the probability amplitude of each state of a basis is associated with the complex electromagnetic amplitude in a given slice of the laser wave front. We discuss the design and operation of an optical module that is used to implement one step of a quantum walk algorithm. Using this module, composed by standard optical elements, the evolution of the quantum state corresponds to the application of a Hadamard gate on a single qubit (representing the two-dimensional quantum coin) followed by a displacement of the N -dimensional quantum walker conditioned on the state of the coin. We show the actual implementation of the method and discuss its characteristics and limitations. © 2006 The American Physical Society.
author Francisco, Diego Hernán
Iemmi, Claudio César
Paz, Juan Pablo
Ledesma, Silvia Adriana
author_facet Francisco, Diego Hernán
Iemmi, Claudio César
Paz, Juan Pablo
Ledesma, Silvia Adriana
author_sort Francisco, Diego Hernán
title Simulating a quantum walk with classical optics
title_short Simulating a quantum walk with classical optics
title_full Simulating a quantum walk with classical optics
title_fullStr Simulating a quantum walk with classical optics
title_full_unstemmed Simulating a quantum walk with classical optics
title_sort simulating a quantum walk with classical optics
publishDate 2006
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v74_n5_p_Francisco
http://hdl.handle.net/20.500.12110/paper_10502947_v74_n5_p_Francisco
work_keys_str_mv AT franciscodiegohernan simulatingaquantumwalkwithclassicaloptics
AT iemmiclaudiocesar simulatingaquantumwalkwithclassicaloptics
AT pazjuanpablo simulatingaquantumwalkwithclassicaloptics
AT ledesmasilviaadriana simulatingaquantumwalkwithclassicaloptics
_version_ 1768546263677009920