Factoring in a dissipative quantum computer
We describe an array of quantum gates implementing Shor’s algorithm [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 116; (unpublished); Phys. Rev. A 53, R2493 (1995)] for prime factorization...
Autores principales: | , , |
---|---|
Publicado: |
1996
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v54_n4_p2605_Miquel http://hdl.handle.net/20.500.12110/paper_10502947_v54_n4_p2605_Miquel |
Aporte de: |
id |
paper:paper_10502947_v54_n4_p2605_Miquel |
---|---|
record_format |
dspace |
spelling |
paper:paper_10502947_v54_n4_p2605_Miquel2023-06-08T16:01:42Z Factoring in a dissipative quantum computer Miquel, César Paz, Juan Pablo Perazzo, Roberto Pedro José Algorithms Computation theory Computer simulation Error correction Fourier transforms Logic gates Polynomials Decoherence Exponentiation Factoring circuits Quantum computer Quantum gates Shor's algorithms Toffoli gates Quantum theory We describe an array of quantum gates implementing Shor’s algorithm [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 116; (unpublished); Phys. Rev. A 53, R2493 (1995)] for prime factorization in a quantum computer. The array includes a circuit for modular exponentiation with several subcomponents (such as controlled multipliers and adders) that are described in terms of elementary Toffoli gates. We present a simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit. For that purpose, we simulate a quantum computer that is running the program to factor N=15 while interacting with a dissipative environment. As a consequence of this interaction, randomly selected quantum bits (qubits) may spontaneously decay. Using the results of our numerical simulations, we analyze the efficiency of some simple error correction techniques. © 1996 The American Physical Society. Fil:Miquel, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perazzo, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1996 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v54_n4_p2605_Miquel http://hdl.handle.net/20.500.12110/paper_10502947_v54_n4_p2605_Miquel |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Algorithms Computation theory Computer simulation Error correction Fourier transforms Logic gates Polynomials Decoherence Exponentiation Factoring circuits Quantum computer Quantum gates Shor's algorithms Toffoli gates Quantum theory |
spellingShingle |
Algorithms Computation theory Computer simulation Error correction Fourier transforms Logic gates Polynomials Decoherence Exponentiation Factoring circuits Quantum computer Quantum gates Shor's algorithms Toffoli gates Quantum theory Miquel, César Paz, Juan Pablo Perazzo, Roberto Pedro José Factoring in a dissipative quantum computer |
topic_facet |
Algorithms Computation theory Computer simulation Error correction Fourier transforms Logic gates Polynomials Decoherence Exponentiation Factoring circuits Quantum computer Quantum gates Shor's algorithms Toffoli gates Quantum theory |
description |
We describe an array of quantum gates implementing Shor’s algorithm [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 116; (unpublished); Phys. Rev. A 53, R2493 (1995)] for prime factorization in a quantum computer. The array includes a circuit for modular exponentiation with several subcomponents (such as controlled multipliers and adders) that are described in terms of elementary Toffoli gates. We present a simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit. For that purpose, we simulate a quantum computer that is running the program to factor N=15 while interacting with a dissipative environment. As a consequence of this interaction, randomly selected quantum bits (qubits) may spontaneously decay. Using the results of our numerical simulations, we analyze the efficiency of some simple error correction techniques. © 1996 The American Physical Society. |
author |
Miquel, César Paz, Juan Pablo Perazzo, Roberto Pedro José |
author_facet |
Miquel, César Paz, Juan Pablo Perazzo, Roberto Pedro José |
author_sort |
Miquel, César |
title |
Factoring in a dissipative quantum computer |
title_short |
Factoring in a dissipative quantum computer |
title_full |
Factoring in a dissipative quantum computer |
title_fullStr |
Factoring in a dissipative quantum computer |
title_full_unstemmed |
Factoring in a dissipative quantum computer |
title_sort |
factoring in a dissipative quantum computer |
publishDate |
1996 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v54_n4_p2605_Miquel http://hdl.handle.net/20.500.12110/paper_10502947_v54_n4_p2605_Miquel |
work_keys_str_mv |
AT miquelcesar factoringinadissipativequantumcomputer AT pazjuanpablo factoringinadissipativequantumcomputer AT perazzorobertopedrojose factoringinadissipativequantumcomputer |
_version_ |
1768545103877505024 |