Factoring in a dissipative quantum computer

We describe an array of quantum gates implementing Shor’s algorithm [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 116; (unpublished); Phys. Rev. A 53, R2493 (1995)] for prime factorization...

Descripción completa

Detalles Bibliográficos
Autores principales: Miquel, César, Paz, Juan Pablo, Perazzo, Roberto Pedro José
Publicado: 1996
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v54_n4_p2605_Miquel
http://hdl.handle.net/20.500.12110/paper_10502947_v54_n4_p2605_Miquel
Aporte de:
id paper:paper_10502947_v54_n4_p2605_Miquel
record_format dspace
spelling paper:paper_10502947_v54_n4_p2605_Miquel2023-06-08T16:01:42Z Factoring in a dissipative quantum computer Miquel, César Paz, Juan Pablo Perazzo, Roberto Pedro José Algorithms Computation theory Computer simulation Error correction Fourier transforms Logic gates Polynomials Decoherence Exponentiation Factoring circuits Quantum computer Quantum gates Shor's algorithms Toffoli gates Quantum theory We describe an array of quantum gates implementing Shor’s algorithm [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 116; (unpublished); Phys. Rev. A 53, R2493 (1995)] for prime factorization in a quantum computer. The array includes a circuit for modular exponentiation with several subcomponents (such as controlled multipliers and adders) that are described in terms of elementary Toffoli gates. We present a simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit. For that purpose, we simulate a quantum computer that is running the program to factor N=15 while interacting with a dissipative environment. As a consequence of this interaction, randomly selected quantum bits (qubits) may spontaneously decay. Using the results of our numerical simulations, we analyze the efficiency of some simple error correction techniques. © 1996 The American Physical Society. Fil:Miquel, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perazzo, R. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1996 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v54_n4_p2605_Miquel http://hdl.handle.net/20.500.12110/paper_10502947_v54_n4_p2605_Miquel
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Algorithms
Computation theory
Computer simulation
Error correction
Fourier transforms
Logic gates
Polynomials
Decoherence
Exponentiation
Factoring circuits
Quantum computer
Quantum gates
Shor's algorithms
Toffoli gates
Quantum theory
spellingShingle Algorithms
Computation theory
Computer simulation
Error correction
Fourier transforms
Logic gates
Polynomials
Decoherence
Exponentiation
Factoring circuits
Quantum computer
Quantum gates
Shor's algorithms
Toffoli gates
Quantum theory
Miquel, César
Paz, Juan Pablo
Perazzo, Roberto Pedro José
Factoring in a dissipative quantum computer
topic_facet Algorithms
Computation theory
Computer simulation
Error correction
Fourier transforms
Logic gates
Polynomials
Decoherence
Exponentiation
Factoring circuits
Quantum computer
Quantum gates
Shor's algorithms
Toffoli gates
Quantum theory
description We describe an array of quantum gates implementing Shor’s algorithm [in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 116; (unpublished); Phys. Rev. A 53, R2493 (1995)] for prime factorization in a quantum computer. The array includes a circuit for modular exponentiation with several subcomponents (such as controlled multipliers and adders) that are described in terms of elementary Toffoli gates. We present a simple analysis of the impact of losses and decoherence on the performance of this quantum factoring circuit. For that purpose, we simulate a quantum computer that is running the program to factor N=15 while interacting with a dissipative environment. As a consequence of this interaction, randomly selected quantum bits (qubits) may spontaneously decay. Using the results of our numerical simulations, we analyze the efficiency of some simple error correction techniques. © 1996 The American Physical Society.
author Miquel, César
Paz, Juan Pablo
Perazzo, Roberto Pedro José
author_facet Miquel, César
Paz, Juan Pablo
Perazzo, Roberto Pedro José
author_sort Miquel, César
title Factoring in a dissipative quantum computer
title_short Factoring in a dissipative quantum computer
title_full Factoring in a dissipative quantum computer
title_fullStr Factoring in a dissipative quantum computer
title_full_unstemmed Factoring in a dissipative quantum computer
title_sort factoring in a dissipative quantum computer
publishDate 1996
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v54_n4_p2605_Miquel
http://hdl.handle.net/20.500.12110/paper_10502947_v54_n4_p2605_Miquel
work_keys_str_mv AT miquelcesar factoringinadissipativequantumcomputer
AT pazjuanpablo factoringinadissipativequantumcomputer
AT perazzorobertopedrojose factoringinadissipativequantumcomputer
_version_ 1768545103877505024