Vortex solutions in the noncommutative torus
Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative s...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298479_v2006_n9_p_Lozano http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano |
Aporte de: |
id |
paper:paper_10298479_v2006_n9_p_Lozano |
---|---|
record_format |
dspace |
spelling |
paper:paper_10298479_v2006_n9_p_Lozano2023-06-08T16:00:23Z Vortex solutions in the noncommutative torus Marqués, Diego Non-Commutative Geometry Solitons Monopoles and Instantons Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006. Fil:Marqués, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298479_v2006_n9_p_Lozano http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Non-Commutative Geometry Solitons Monopoles and Instantons |
spellingShingle |
Non-Commutative Geometry Solitons Monopoles and Instantons Marqués, Diego Vortex solutions in the noncommutative torus |
topic_facet |
Non-Commutative Geometry Solitons Monopoles and Instantons |
description |
Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006. |
author |
Marqués, Diego |
author_facet |
Marqués, Diego |
author_sort |
Marqués, Diego |
title |
Vortex solutions in the noncommutative torus |
title_short |
Vortex solutions in the noncommutative torus |
title_full |
Vortex solutions in the noncommutative torus |
title_fullStr |
Vortex solutions in the noncommutative torus |
title_full_unstemmed |
Vortex solutions in the noncommutative torus |
title_sort |
vortex solutions in the noncommutative torus |
publishDate |
2006 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298479_v2006_n9_p_Lozano http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano |
work_keys_str_mv |
AT marquesdiego vortexsolutionsinthenoncommutativetorus |
_version_ |
1768544002155479040 |