Vortex solutions in the noncommutative torus

Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marqués, Diego
Publicado: 2006
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298479_v2006_n9_p_Lozano
http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano
Aporte de:
id paper:paper_10298479_v2006_n9_p_Lozano
record_format dspace
spelling paper:paper_10298479_v2006_n9_p_Lozano2023-06-08T16:00:23Z Vortex solutions in the noncommutative torus Marqués, Diego Non-Commutative Geometry Solitons Monopoles and Instantons Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006. Fil:Marqués, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2006 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298479_v2006_n9_p_Lozano http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Non-Commutative Geometry
Solitons Monopoles and Instantons
spellingShingle Non-Commutative Geometry
Solitons Monopoles and Instantons
Marqués, Diego
Vortex solutions in the noncommutative torus
topic_facet Non-Commutative Geometry
Solitons Monopoles and Instantons
description Vortex configurations in the two-dimensional torus are considered in noncommutative space. We analyze the BPS equations of the Abelian Higgs model. Numerical solutions are constructed for the self-dual and anti-self dual cases by extending an algorithm originally developed for ordinary commutative space. We work within the Fock space approach to noncommutative theories and the Moyal-Weyl connection is used in the final stage to express the solutions in configuration space. © SISSA 2006.
author Marqués, Diego
author_facet Marqués, Diego
author_sort Marqués, Diego
title Vortex solutions in the noncommutative torus
title_short Vortex solutions in the noncommutative torus
title_full Vortex solutions in the noncommutative torus
title_fullStr Vortex solutions in the noncommutative torus
title_full_unstemmed Vortex solutions in the noncommutative torus
title_sort vortex solutions in the noncommutative torus
publishDate 2006
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298479_v2006_n9_p_Lozano
http://hdl.handle.net/20.500.12110/paper_10298479_v2006_n9_p_Lozano
work_keys_str_mv AT marquesdiego vortexsolutionsinthenoncommutativetorus
_version_ 1768544002155479040