Detailed asymptotic of eigenvalues on time scales
Let ={an}n{0} be a time scale with zero Minkowski (or box) dimension, where {an}n is a monotonically decreasing sequence converging to zero, and a1=1. In this paper, we find an upper bound for the eigenvalue counting function of the linear problem -u=u, with Dirichlet boundary conditions. We obtain...
Autores principales: | , , |
---|---|
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10236198_v15_n3_p225_Amster http://hdl.handle.net/20.500.12110/paper_10236198_v15_n3_p225_Amster |
Aporte de: |
id |
paper:paper_10236198_v15_n3_p225_Amster |
---|---|
record_format |
dspace |
spelling |
paper:paper_10236198_v15_n3_p225_Amster2023-06-08T16:00:10Z Detailed asymptotic of eigenvalues on time scales Amster, Pablo Gustavo De Napoli, Pablo Luis Pinasco, Juan Pablo Asymptotic bounds Asymptotic of eigenvalues Minkowski dimension Time scales Let ={an}n{0} be a time scale with zero Minkowski (or box) dimension, where {an}n is a monotonically decreasing sequence converging to zero, and a1=1. In this paper, we find an upper bound for the eigenvalue counting function of the linear problem -u=u, with Dirichlet boundary conditions. We obtain that the nth-eigenvalue is bounded below by [image omitted]. We show that the bound is optimal for the q-difference equations arising in quantum calculus. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:De Napoli, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2009 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10236198_v15_n3_p225_Amster http://hdl.handle.net/20.500.12110/paper_10236198_v15_n3_p225_Amster |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Asymptotic bounds Asymptotic of eigenvalues Minkowski dimension Time scales |
spellingShingle |
Asymptotic bounds Asymptotic of eigenvalues Minkowski dimension Time scales Amster, Pablo Gustavo De Napoli, Pablo Luis Pinasco, Juan Pablo Detailed asymptotic of eigenvalues on time scales |
topic_facet |
Asymptotic bounds Asymptotic of eigenvalues Minkowski dimension Time scales |
description |
Let ={an}n{0} be a time scale with zero Minkowski (or box) dimension, where {an}n is a monotonically decreasing sequence converging to zero, and a1=1. In this paper, we find an upper bound for the eigenvalue counting function of the linear problem -u=u, with Dirichlet boundary conditions. We obtain that the nth-eigenvalue is bounded below by [image omitted]. We show that the bound is optimal for the q-difference equations arising in quantum calculus. |
author |
Amster, Pablo Gustavo De Napoli, Pablo Luis Pinasco, Juan Pablo |
author_facet |
Amster, Pablo Gustavo De Napoli, Pablo Luis Pinasco, Juan Pablo |
author_sort |
Amster, Pablo Gustavo |
title |
Detailed asymptotic of eigenvalues on time scales |
title_short |
Detailed asymptotic of eigenvalues on time scales |
title_full |
Detailed asymptotic of eigenvalues on time scales |
title_fullStr |
Detailed asymptotic of eigenvalues on time scales |
title_full_unstemmed |
Detailed asymptotic of eigenvalues on time scales |
title_sort |
detailed asymptotic of eigenvalues on time scales |
publishDate |
2009 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10236198_v15_n3_p225_Amster http://hdl.handle.net/20.500.12110/paper_10236198_v15_n3_p225_Amster |
work_keys_str_mv |
AT amsterpablogustavo detailedasymptoticofeigenvaluesontimescales AT denapolipabloluis detailedasymptoticofeigenvaluesontimescales AT pinascojuanpablo detailedasymptoticofeigenvaluesontimescales |
_version_ |
1768546732124143616 |