Navier-Stokes solutions for steady parallel-sided pendent rivulets
We investigate exact solutions of the NavierStokes equations for steady rectilinear pendent rivulets running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets for any profile of the substrate (transversally to the direction of flow) and with no restri...
Autores principales: | , , |
---|---|
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09977546_v29_n6_p465_Tanasijczuk http://hdl.handle.net/20.500.12110/paper_09977546_v29_n6_p465_Tanasijczuk |
Aporte de: |
id |
paper:paper_09977546_v29_n6_p465_Tanasijczuk |
---|---|
record_format |
dspace |
spelling |
paper:paper_09977546_v29_n6_p465_Tanasijczuk2023-06-08T15:59:19Z Navier-Stokes solutions for steady parallel-sided pendent rivulets Tanasijczuk, Andrés Jorge Perazzo, Carlos Alberto Gratton, Julio NavierStokes equations Parallel flow Pendent rivulet Contact lines Exact solution Free surfaces Global properties Inclined planes Inclined surface Navier Stokes Parallel flows Pendent rivulet Solid surface Static equilibrium Systematic study Velocity field Contact angle Poisson equation Surface tension Parallel flow We investigate exact solutions of the NavierStokes equations for steady rectilinear pendent rivulets running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets for any profile of the substrate (transversally to the direction of flow) and with no restrictions on the contact angles. The free surface is a cylindrical meniscus whose shape is determined by the static equilibrium between gravity and surface tension, by the shape of the solid surface, and by the contact angles on both contact lines. Given this, the velocity field can be obtained by integrating numerically a Poisson equation. We then perform a systematic study of rivulets hanging below an inclined plane, computing some of their global properties, and discussing their stability. © 2010 Elsevier Masson SAS. All rights reserved. Fil:Tanasijczuk, A.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09977546_v29_n6_p465_Tanasijczuk http://hdl.handle.net/20.500.12110/paper_09977546_v29_n6_p465_Tanasijczuk |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
NavierStokes equations Parallel flow Pendent rivulet Contact lines Exact solution Free surfaces Global properties Inclined planes Inclined surface Navier Stokes Parallel flows Pendent rivulet Solid surface Static equilibrium Systematic study Velocity field Contact angle Poisson equation Surface tension Parallel flow |
spellingShingle |
NavierStokes equations Parallel flow Pendent rivulet Contact lines Exact solution Free surfaces Global properties Inclined planes Inclined surface Navier Stokes Parallel flows Pendent rivulet Solid surface Static equilibrium Systematic study Velocity field Contact angle Poisson equation Surface tension Parallel flow Tanasijczuk, Andrés Jorge Perazzo, Carlos Alberto Gratton, Julio Navier-Stokes solutions for steady parallel-sided pendent rivulets |
topic_facet |
NavierStokes equations Parallel flow Pendent rivulet Contact lines Exact solution Free surfaces Global properties Inclined planes Inclined surface Navier Stokes Parallel flows Pendent rivulet Solid surface Static equilibrium Systematic study Velocity field Contact angle Poisson equation Surface tension Parallel flow |
description |
We investigate exact solutions of the NavierStokes equations for steady rectilinear pendent rivulets running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets for any profile of the substrate (transversally to the direction of flow) and with no restrictions on the contact angles. The free surface is a cylindrical meniscus whose shape is determined by the static equilibrium between gravity and surface tension, by the shape of the solid surface, and by the contact angles on both contact lines. Given this, the velocity field can be obtained by integrating numerically a Poisson equation. We then perform a systematic study of rivulets hanging below an inclined plane, computing some of their global properties, and discussing their stability. © 2010 Elsevier Masson SAS. All rights reserved. |
author |
Tanasijczuk, Andrés Jorge Perazzo, Carlos Alberto Gratton, Julio |
author_facet |
Tanasijczuk, Andrés Jorge Perazzo, Carlos Alberto Gratton, Julio |
author_sort |
Tanasijczuk, Andrés Jorge |
title |
Navier-Stokes solutions for steady parallel-sided pendent rivulets |
title_short |
Navier-Stokes solutions for steady parallel-sided pendent rivulets |
title_full |
Navier-Stokes solutions for steady parallel-sided pendent rivulets |
title_fullStr |
Navier-Stokes solutions for steady parallel-sided pendent rivulets |
title_full_unstemmed |
Navier-Stokes solutions for steady parallel-sided pendent rivulets |
title_sort |
navier-stokes solutions for steady parallel-sided pendent rivulets |
publishDate |
2010 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09977546_v29_n6_p465_Tanasijczuk http://hdl.handle.net/20.500.12110/paper_09977546_v29_n6_p465_Tanasijczuk |
work_keys_str_mv |
AT tanasijczukandresjorge navierstokessolutionsforsteadyparallelsidedpendentrivulets AT perazzocarlosalberto navierstokessolutionsforsteadyparallelsidedpendentrivulets AT grattonjulio navierstokessolutionsforsteadyparallelsidedpendentrivulets |
_version_ |
1768542187507679232 |