On star and biclique edge-colorings
A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph wit...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09696016_v24_n1-2_p339_Dantas http://hdl.handle.net/20.500.12110/paper_09696016_v24_n1-2_p339_Dantas |
Aporte de: |
id |
paper:paper_09696016_v24_n1-2_p339_Dantas |
---|---|
record_format |
dspace |
spelling |
paper:paper_09696016_v24_n1-2_p339_Dantas2023-06-08T15:59:03Z On star and biclique edge-colorings Groshaus, Marina E. biclique edge-coloring NP-hard star edge-coloring Coloring Polynomial approximation Set theory Stars Bicliques Chordal bipartite graph Complete bipartite graphs Edge coloring Free graphs NP-hard Polynomial-time algorithms Two-color Graph theory A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edge-coloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K3-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles. © 2016 The Authors. International Transactions in Operational Research © 2016 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. Fil:Groshaus, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2017 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09696016_v24_n1-2_p339_Dantas http://hdl.handle.net/20.500.12110/paper_09696016_v24_n1-2_p339_Dantas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
biclique edge-coloring NP-hard star edge-coloring Coloring Polynomial approximation Set theory Stars Bicliques Chordal bipartite graph Complete bipartite graphs Edge coloring Free graphs NP-hard Polynomial-time algorithms Two-color Graph theory |
spellingShingle |
biclique edge-coloring NP-hard star edge-coloring Coloring Polynomial approximation Set theory Stars Bicliques Chordal bipartite graph Complete bipartite graphs Edge coloring Free graphs NP-hard Polynomial-time algorithms Two-color Graph theory Groshaus, Marina E. On star and biclique edge-colorings |
topic_facet |
biclique edge-coloring NP-hard star edge-coloring Coloring Polynomial approximation Set theory Stars Bicliques Chordal bipartite graph Complete bipartite graphs Edge coloring Free graphs NP-hard Polynomial-time algorithms Two-color Graph theory |
description |
A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph Kp,q of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph K1,q. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edge-coloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K3-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles. © 2016 The Authors. International Transactions in Operational Research © 2016 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. |
author |
Groshaus, Marina E. |
author_facet |
Groshaus, Marina E. |
author_sort |
Groshaus, Marina E. |
title |
On star and biclique edge-colorings |
title_short |
On star and biclique edge-colorings |
title_full |
On star and biclique edge-colorings |
title_fullStr |
On star and biclique edge-colorings |
title_full_unstemmed |
On star and biclique edge-colorings |
title_sort |
on star and biclique edge-colorings |
publishDate |
2017 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09696016_v24_n1-2_p339_Dantas http://hdl.handle.net/20.500.12110/paper_09696016_v24_n1-2_p339_Dantas |
work_keys_str_mv |
AT groshausmarinae onstarandbicliqueedgecolorings |
_version_ |
1768546548932673536 |