Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila
Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinfor...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09609822_v25_n6_p751_Huetteroth http://hdl.handle.net/20.500.12110/paper_09609822_v25_n6_p751_Huetteroth |
Aporte de: |
id |
paper:paper_09609822_v25_n6_p751_Huetteroth |
---|---|
record_format |
dspace |
spelling |
paper:paper_09609822_v25_n6_p751_Huetteroth2023-06-08T15:57:56Z Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila Klappenbach, Martin Basidiomycota Hexapoda Mammalia Drosophila protein neurotransmitter receptor OAMB protein, Drosophila animal appetite cytology dopaminergic nerve cell Drosophila melanogaster female genetics long term memory male mushroom body mutation nutritional value physiology reinforcement reward short term memory taste transgenic animal Animals Animals, Genetically Modified Appetitive Behavior Dopaminergic Neurons Drosophila melanogaster Drosophila Proteins Female Male Memory, Long-Term Memory, Short-Term Mushroom Bodies Mutation Nutritive Value Receptors, Neurotransmitter Reinforcement (Psychology) Reward Taste Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′<inf>2</inf> and γ<inf>4</inf> regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ<inf>5b</inf> regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α<inf>1</inf> region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. © 2015 The Authors. Fil:Klappenbach, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2015 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09609822_v25_n6_p751_Huetteroth http://hdl.handle.net/20.500.12110/paper_09609822_v25_n6_p751_Huetteroth |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Basidiomycota Hexapoda Mammalia Drosophila protein neurotransmitter receptor OAMB protein, Drosophila animal appetite cytology dopaminergic nerve cell Drosophila melanogaster female genetics long term memory male mushroom body mutation nutritional value physiology reinforcement reward short term memory taste transgenic animal Animals Animals, Genetically Modified Appetitive Behavior Dopaminergic Neurons Drosophila melanogaster Drosophila Proteins Female Male Memory, Long-Term Memory, Short-Term Mushroom Bodies Mutation Nutritive Value Receptors, Neurotransmitter Reinforcement (Psychology) Reward Taste |
spellingShingle |
Basidiomycota Hexapoda Mammalia Drosophila protein neurotransmitter receptor OAMB protein, Drosophila animal appetite cytology dopaminergic nerve cell Drosophila melanogaster female genetics long term memory male mushroom body mutation nutritional value physiology reinforcement reward short term memory taste transgenic animal Animals Animals, Genetically Modified Appetitive Behavior Dopaminergic Neurons Drosophila melanogaster Drosophila Proteins Female Male Memory, Long-Term Memory, Short-Term Mushroom Bodies Mutation Nutritive Value Receptors, Neurotransmitter Reinforcement (Psychology) Reward Taste Klappenbach, Martin Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila |
topic_facet |
Basidiomycota Hexapoda Mammalia Drosophila protein neurotransmitter receptor OAMB protein, Drosophila animal appetite cytology dopaminergic nerve cell Drosophila melanogaster female genetics long term memory male mushroom body mutation nutritional value physiology reinforcement reward short term memory taste transgenic animal Animals Animals, Genetically Modified Appetitive Behavior Dopaminergic Neurons Drosophila melanogaster Drosophila Proteins Female Male Memory, Long-Term Memory, Short-Term Mushroom Bodies Mutation Nutritive Value Receptors, Neurotransmitter Reinforcement (Psychology) Reward Taste |
description |
Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′<inf>2</inf> and γ<inf>4</inf> regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ<inf>5b</inf> regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α<inf>1</inf> region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. © 2015 The Authors. |
author |
Klappenbach, Martin |
author_facet |
Klappenbach, Martin |
author_sort |
Klappenbach, Martin |
title |
Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila |
title_short |
Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila |
title_full |
Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila |
title_fullStr |
Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila |
title_full_unstemmed |
Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila |
title_sort |
sweet taste and nutrient value subdivide rewarding dopaminergic neurons in drosophila |
publishDate |
2015 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09609822_v25_n6_p751_Huetteroth http://hdl.handle.net/20.500.12110/paper_09609822_v25_n6_p751_Huetteroth |
work_keys_str_mv |
AT klappenbachmartin sweettasteandnutrientvaluesubdividerewardingdopaminergicneuronsindrosophila |
_version_ |
1768545426172018688 |