Bounds for traces in complete intersections and degrees in the Nullstellensatz
In this paper we obtain an effective Nullstellensatz using quantitative considerations of the classical duality theory in complete intersections. Let k be an infinite perfect field and let f1,..., f n-r∈k[X1,...,Xn] be a regular sequence with d:=maxj deg fj. Denote by A the polynomial ring k [X1,......
Guardado en:
Autores principales: | Sabia, Juan Vicente Rafael, Solerno, Pablo Luis |
---|---|
Publicado: |
1995
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v6_n6_p353_Sabia http://hdl.handle.net/20.500.12110/paper_09381279_v6_n6_p353_Sabia |
Aporte de: |
Ejemplares similares
-
Bounds for traces in complete intersections and degrees in the Nullstellensatz
por: Sabia, J., et al. -
On intrinsic bounds in the Nullstellensatz
por: Krick, T., et al. -
On intrinsic bounds in the Nullstellensatz
por: Krick, Teresa Elena Genoveva, et al.
Publicado: (1997) -
Counting solutions to binomial complete intersections
por: Cattani, Eduardo H.C., et al.
Publicado: (2007) -
Counting solutions to binomial complete intersections
por: Cattani, E., et al.
Publicado: (2007)