Bounds for traces in complete intersections and degrees in the Nullstellensatz

In this paper we obtain an effective Nullstellensatz using quantitative considerations of the classical duality theory in complete intersections. Let k be an infinite perfect field and let f1,..., f n-r∈k[X1,...,Xn] be a regular sequence with d:=maxj deg fj. Denote by A the polynomial ring k [X1,......

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sabia, Juan Vicente Rafael, Solerno, Pablo Luis
Publicado: 1995
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v6_n6_p353_Sabia
http://hdl.handle.net/20.500.12110/paper_09381279_v6_n6_p353_Sabia
Aporte de:
id paper:paper_09381279_v6_n6_p353_Sabia
record_format dspace
spelling paper:paper_09381279_v6_n6_p353_Sabia2023-06-08T15:53:23Z Bounds for traces in complete intersections and degrees in the Nullstellensatz Sabia, Juan Vicente Rafael Solerno, Pablo Luis Bertini's theorem Bezout's inequality Complete intersection polynomial ideals Effective Nullstellensatz Trace theory In this paper we obtain an effective Nullstellensatz using quantitative considerations of the classical duality theory in complete intersections. Let k be an infinite perfect field and let f1,..., f n-r∈k[X1,...,Xn] be a regular sequence with d:=maxj deg fj. Denote by A the polynomial ring k [X1,..., Xr] and by B the factor ring k[X1,...,Xn]/(f1,...,fnr); assume that the canonical morphism A→B is injective and integral and that the Jacobian determinant Δ with respect to the variables Xr+1,...,Xn is not a zero divisor in B. Let finally σ∈B*:=HomA(B, A) be the generator of B* associated to the regular sequence. We show that for each polynomial f the inequality deg σ(-f) ≦dnr(δ+1) holds (-fdenotes the class of f in B and δ is an upper bound for (n-r)d and deg f). For the usual trace associated to the (free) extension A {right arrow, hooked}B we obtain a somewhat more precise bound: deg Tr(-f) ≦ dnr deg f. From these bounds and Bertini's theorem we deduce an elementary proof of the following effective Nullstellensatz: let f1,..., fs be polynomials in k[X1,...,Xn] with degrees bounded by a constant d≧2; then 1 ∈(f1,..., fs) if and only if there exist polynomials p1,..., ps∈k[X1,..., Xn] with degrees bounded by 4n(d+ 1)n such that 1=Σipifi. in the particular cases when the characteristic of the base field k is zero or d=2 the sharper bound 4ndn is obtained. © 1995 Springer-Verlag. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1995 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v6_n6_p353_Sabia http://hdl.handle.net/20.500.12110/paper_09381279_v6_n6_p353_Sabia
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bertini's theorem
Bezout's inequality
Complete intersection polynomial ideals
Effective Nullstellensatz
Trace theory
spellingShingle Bertini's theorem
Bezout's inequality
Complete intersection polynomial ideals
Effective Nullstellensatz
Trace theory
Sabia, Juan Vicente Rafael
Solerno, Pablo Luis
Bounds for traces in complete intersections and degrees in the Nullstellensatz
topic_facet Bertini's theorem
Bezout's inequality
Complete intersection polynomial ideals
Effective Nullstellensatz
Trace theory
description In this paper we obtain an effective Nullstellensatz using quantitative considerations of the classical duality theory in complete intersections. Let k be an infinite perfect field and let f1,..., f n-r∈k[X1,...,Xn] be a regular sequence with d:=maxj deg fj. Denote by A the polynomial ring k [X1,..., Xr] and by B the factor ring k[X1,...,Xn]/(f1,...,fnr); assume that the canonical morphism A→B is injective and integral and that the Jacobian determinant Δ with respect to the variables Xr+1,...,Xn is not a zero divisor in B. Let finally σ∈B*:=HomA(B, A) be the generator of B* associated to the regular sequence. We show that for each polynomial f the inequality deg σ(-f) ≦dnr(δ+1) holds (-fdenotes the class of f in B and δ is an upper bound for (n-r)d and deg f). For the usual trace associated to the (free) extension A {right arrow, hooked}B we obtain a somewhat more precise bound: deg Tr(-f) ≦ dnr deg f. From these bounds and Bertini's theorem we deduce an elementary proof of the following effective Nullstellensatz: let f1,..., fs be polynomials in k[X1,...,Xn] with degrees bounded by a constant d≧2; then 1 ∈(f1,..., fs) if and only if there exist polynomials p1,..., ps∈k[X1,..., Xn] with degrees bounded by 4n(d+ 1)n such that 1=Σipifi. in the particular cases when the characteristic of the base field k is zero or d=2 the sharper bound 4ndn is obtained. © 1995 Springer-Verlag.
author Sabia, Juan Vicente Rafael
Solerno, Pablo Luis
author_facet Sabia, Juan Vicente Rafael
Solerno, Pablo Luis
author_sort Sabia, Juan Vicente Rafael
title Bounds for traces in complete intersections and degrees in the Nullstellensatz
title_short Bounds for traces in complete intersections and degrees in the Nullstellensatz
title_full Bounds for traces in complete intersections and degrees in the Nullstellensatz
title_fullStr Bounds for traces in complete intersections and degrees in the Nullstellensatz
title_full_unstemmed Bounds for traces in complete intersections and degrees in the Nullstellensatz
title_sort bounds for traces in complete intersections and degrees in the nullstellensatz
publishDate 1995
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09381279_v6_n6_p353_Sabia
http://hdl.handle.net/20.500.12110/paper_09381279_v6_n6_p353_Sabia
work_keys_str_mv AT sabiajuanvicenterafael boundsfortracesincompleteintersectionsanddegreesinthenullstellensatz
AT solernopabloluis boundsfortracesincompleteintersectionsanddegreesinthenullstellensatz
_version_ 1768546167490084864