Thermal patterning of superconducting films

The transient shape control of a superconducting high Tc film by selective optical heating has been addressed in this work, using a non-conventional technique that combines the application of a pulsed magnetic field and the optical heating of the superconducting film by a synchronized pulsed laser....

Descripción completa

Detalles Bibliográficos
Autores principales: Tortarolo, Marina, Ferrari, Hernán Javier, Marconi, Mario Carlos, Bekeris, Victoria Isabel
Publicado: 2004
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09214534_v408-410_n1-4_p599_Tortarolo
http://hdl.handle.net/20.500.12110/paper_09214534_v408-410_n1-4_p599_Tortarolo
Aporte de:
id paper:paper_09214534_v408-410_n1-4_p599_Tortarolo
record_format dspace
spelling paper:paper_09214534_v408-410_n1-4_p599_Tortarolo2023-06-08T15:50:45Z Thermal patterning of superconducting films Tortarolo, Marina Ferrari, Hernán Javier Marconi, Mario Carlos Bekeris, Victoria Isabel Critical state Dc magnetization Short time Critical state Dc magnetization Short time Zero field cooled (ZFC) superconducting films Cathode ray oscilloscopes Cryostats Heating Magnetic fields Magnetic flux Magnetization Mathematical models Micrometers Pulsed laser applications Synchronization Superconducting films The transient shape control of a superconducting high Tc film by selective optical heating has been addressed in this work, using a non-conventional technique that combines the application of a pulsed magnetic field and the optical heating of the superconducting film by a synchronized pulsed laser. A zero field cooled (ZFC) film was partially protected by a mask before exposing it to the laser radiation. The temperature at the illuminated area rises causing very fast local lowering of the vortex pinning force or may even rise above Tc. As a result, flux penetrates completely the heated area and an effective smaller sample remains in a superconducting critical state. Flux penetration is measured with a pick-up coil for different positions of the mask. Results are described within the critical state model for a strip, where the time integrated voltage signal is approximated to the flux difference between the initial ZFC sample and the final critical state of the "new" (cold) ZFC sample. © 2004 Elsevier B.V. All rights reserved. Fil:Tortarolo, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Ferrari, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Marconi, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bekeris, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2004 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09214534_v408-410_n1-4_p599_Tortarolo http://hdl.handle.net/20.500.12110/paper_09214534_v408-410_n1-4_p599_Tortarolo
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Critical state
Dc magnetization
Short time
Critical state
Dc magnetization
Short time
Zero field cooled (ZFC) superconducting films
Cathode ray oscilloscopes
Cryostats
Heating
Magnetic fields
Magnetic flux
Magnetization
Mathematical models
Micrometers
Pulsed laser applications
Synchronization
Superconducting films
spellingShingle Critical state
Dc magnetization
Short time
Critical state
Dc magnetization
Short time
Zero field cooled (ZFC) superconducting films
Cathode ray oscilloscopes
Cryostats
Heating
Magnetic fields
Magnetic flux
Magnetization
Mathematical models
Micrometers
Pulsed laser applications
Synchronization
Superconducting films
Tortarolo, Marina
Ferrari, Hernán Javier
Marconi, Mario Carlos
Bekeris, Victoria Isabel
Thermal patterning of superconducting films
topic_facet Critical state
Dc magnetization
Short time
Critical state
Dc magnetization
Short time
Zero field cooled (ZFC) superconducting films
Cathode ray oscilloscopes
Cryostats
Heating
Magnetic fields
Magnetic flux
Magnetization
Mathematical models
Micrometers
Pulsed laser applications
Synchronization
Superconducting films
description The transient shape control of a superconducting high Tc film by selective optical heating has been addressed in this work, using a non-conventional technique that combines the application of a pulsed magnetic field and the optical heating of the superconducting film by a synchronized pulsed laser. A zero field cooled (ZFC) film was partially protected by a mask before exposing it to the laser radiation. The temperature at the illuminated area rises causing very fast local lowering of the vortex pinning force or may even rise above Tc. As a result, flux penetrates completely the heated area and an effective smaller sample remains in a superconducting critical state. Flux penetration is measured with a pick-up coil for different positions of the mask. Results are described within the critical state model for a strip, where the time integrated voltage signal is approximated to the flux difference between the initial ZFC sample and the final critical state of the "new" (cold) ZFC sample. © 2004 Elsevier B.V. All rights reserved.
author Tortarolo, Marina
Ferrari, Hernán Javier
Marconi, Mario Carlos
Bekeris, Victoria Isabel
author_facet Tortarolo, Marina
Ferrari, Hernán Javier
Marconi, Mario Carlos
Bekeris, Victoria Isabel
author_sort Tortarolo, Marina
title Thermal patterning of superconducting films
title_short Thermal patterning of superconducting films
title_full Thermal patterning of superconducting films
title_fullStr Thermal patterning of superconducting films
title_full_unstemmed Thermal patterning of superconducting films
title_sort thermal patterning of superconducting films
publishDate 2004
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09214534_v408-410_n1-4_p599_Tortarolo
http://hdl.handle.net/20.500.12110/paper_09214534_v408-410_n1-4_p599_Tortarolo
work_keys_str_mv AT tortarolomarina thermalpatterningofsuperconductingfilms
AT ferrarihernanjavier thermalpatterningofsuperconductingfilms
AT marconimariocarlos thermalpatterningofsuperconductingfilms
AT bekerisvictoriaisabel thermalpatterningofsuperconductingfilms
_version_ 1768545516746964992