Numerably contractible categories
We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines...
Autor principal: | |
---|---|
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09203036_v36_n3-4_p209_Minian http://hdl.handle.net/20.500.12110/paper_09203036_v36_n3-4_p209_Minian |
Aporte de: |
id |
paper:paper_09203036_v36_n3-4_p209_Minian |
---|---|
record_format |
dspace |
spelling |
paper:paper_09203036_v36_n3-4_p209_Minian2023-06-08T15:50:06Z Numerably contractible categories Minian, Elias Gabriel CW-complexes H-spaces Small categories We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines for global actions, small categories and related objects. © Springer 2006. Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09203036_v36_n3-4_p209_Minian http://hdl.handle.net/20.500.12110/paper_09203036_v36_n3-4_p209_Minian |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
CW-complexes H-spaces Small categories |
spellingShingle |
CW-complexes H-spaces Small categories Minian, Elias Gabriel Numerably contractible categories |
topic_facet |
CW-complexes H-spaces Small categories |
description |
We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines for global actions, small categories and related objects. © Springer 2006. |
author |
Minian, Elias Gabriel |
author_facet |
Minian, Elias Gabriel |
author_sort |
Minian, Elias Gabriel |
title |
Numerably contractible categories |
title_short |
Numerably contractible categories |
title_full |
Numerably contractible categories |
title_fullStr |
Numerably contractible categories |
title_full_unstemmed |
Numerably contractible categories |
title_sort |
numerably contractible categories |
publishDate |
2005 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09203036_v36_n3-4_p209_Minian http://hdl.handle.net/20.500.12110/paper_09203036_v36_n3-4_p209_Minian |
work_keys_str_mv |
AT minianeliasgabriel numerablycontractiblecategories |
_version_ |
1768542133305737216 |