Numerably contractible categories

We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines...

Descripción completa

Detalles Bibliográficos
Autor principal: Minian, Elias Gabriel
Publicado: 2005
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09203036_v36_n3-4_p209_Minian
http://hdl.handle.net/20.500.12110/paper_09203036_v36_n3-4_p209_Minian
Aporte de:
id paper:paper_09203036_v36_n3-4_p209_Minian
record_format dspace
spelling paper:paper_09203036_v36_n3-4_p209_Minian2023-06-08T15:50:06Z Numerably contractible categories Minian, Elias Gabriel CW-complexes H-spaces Small categories We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines for global actions, small categories and related objects. © Springer 2006. Fil:Minian, E.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2005 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09203036_v36_n3-4_p209_Minian http://hdl.handle.net/20.500.12110/paper_09203036_v36_n3-4_p209_Minian
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic CW-complexes
H-spaces
Small categories
spellingShingle CW-complexes
H-spaces
Small categories
Minian, Elias Gabriel
Numerably contractible categories
topic_facet CW-complexes
H-spaces
Small categories
description We develop the notion of numerably contractible category and use it for describing conditions when a homotopy associative H-category has a homotopy inverse. We prove that complex categories are numerably contractible. The results play a role in Bak's program for constructing delooping machines for global actions, small categories and related objects. © Springer 2006.
author Minian, Elias Gabriel
author_facet Minian, Elias Gabriel
author_sort Minian, Elias Gabriel
title Numerably contractible categories
title_short Numerably contractible categories
title_full Numerably contractible categories
title_fullStr Numerably contractible categories
title_full_unstemmed Numerably contractible categories
title_sort numerably contractible categories
publishDate 2005
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09203036_v36_n3-4_p209_Minian
http://hdl.handle.net/20.500.12110/paper_09203036_v36_n3-4_p209_Minian
work_keys_str_mv AT minianeliasgabriel numerablycontractiblecategories
_version_ 1768542133305737216